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1. INTRODUCTION 

Among other formulations of simultaneous approximation, the notion of a "Vectorially Minimal 

Approximation” is introduced, which is shown to be the natural setting for problems of simultaneity, 

both theoretically as well as computationally. For the above formulations of Multicriteria Optimization 

we propose 3 types of "models" and show their interrelationships in each "primal" and "dual" spaces. 

In particular, attention has been given to effective models suitable for numerical computation. A 

related problem situated in the "dual space” of approximation operators is to approximate the (non-

linear) best approximation operator by projection operators. This approach, as a tool of “good” 

approximation of functions (in situations to be specified), is motivated by the following inequality, 

where the role of minimal projections, i.e. 𝑚𝑖𝑛‖𝑃‖ is self-explanatory. 

 

‖𝑓 − 𝑃𝑓‖ ≤ ‖𝐼 − 𝑃‖𝑑𝑖𝑠𝑡(𝑓, 𝑌) ≤ (1 + ‖𝑃‖)𝑑𝑖𝑠𝑡(𝑓, 𝑌). 
 
 Here again the approximation in the operator space is done simultaneously with respect to several 

norms. As just indicated, this reduces to finding “simultaneously” minimal projection norms. 

Examples are given and a “Zero in the Convex Hull” as well as a “Kolmogorov-type” characterization 

theorems are presented. 

 
 The tools used in this presentation are Elementary Optimization Theory, Computational Numerical 

Analysis and Elementary Functional Analysis. 

 

 
 

 
 



2. VECTORIAL APPROXIMATION 

Let ‖∙‖𝒂, ‖∙‖𝒃 be two norms defined on a linear space 𝑆 and let 𝑓 ∈  𝑆 ~ 𝐾 be a given function to 

be approximated by approximation 𝑝 ∈  𝐾 ⊂  𝑆. 𝐾 is assumed to be a closed, convex, proper 

subset of 𝑆. Let 𝐺(𝑝) = ( || 𝑓 − 𝑝 ||𝑎 
, || 𝑓 − 𝑝||𝑏 

) and define the partial ordering ⊵ on 𝐺(𝐾) by 

𝐺(𝑝) ⊴ 𝐺(𝑞) ⟺ {

‖𝑓 − 𝑝‖𝑎 ≤ ‖𝑓 − 𝑞‖𝑎

𝑎𝑛𝑑
‖𝑓 − 𝑝‖𝑏 ≤ ‖𝑓 − 𝑞‖𝑏

 

 

We shall write 𝐺(𝑝) ⊲ 𝐺(𝑞) if and only if 𝐺(𝑝) ⊴ 𝐺(𝑞)  and 𝐺(𝑝) ≠ 𝐺(𝑞).  

 

Definition 2.1  

We say that 𝑝 is a best vec approximation if there does not exist a 𝑞 ∈  𝐾 such that 𝐺(𝑞) ⊲ 𝐺(𝑝). 

 

Definition 2.2 

The minimal set 𝑀 is given by 

𝑀 = {𝐺(𝑝): 𝑝 ∈  𝐾 𝑖𝑠 𝑎 𝑏𝑒𝑠𝑡 𝑣𝑒𝑐 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 }. 

 

There are some general geometric facts that are easy to verify. We cite some of them here:  

 𝜋1(𝐺(𝐾)) has zero homotopy group.  

 𝑀 is a convex, decreasing arc. 

 

Let 𝛬 is the 45∘ 

 

bisector of the  ‖∙‖𝒂, ‖∙‖𝒃  orthogonal axes. 𝐿 is the supporting line to 𝐺(𝐾) which 

makes 135∘ angle with ‖∙‖𝒂 axes. 
The proof of the following theorem is a consequence of the definitions, convexity and, in the case of 
(𝑃𝑚) = 𝑀 ∪ 𝐿 , the continuity of the best approximation operator. 𝑆𝑢𝑚 here denotes the sum of two 

norms. 𝑀𝑎𝑥 means the maximum of two norms. 

 

Theorem 2.1 

Let 𝑝𝑠 be a best 𝑠𝑢𝑚 approximation. Then 𝐺(𝑃𝑠) ⊆ 𝑀 ∪ 𝐿. Similarly, if 𝑝𝑚 denotes the best 𝑚𝑎𝑥 

approximation then 𝐺(𝑃𝑚) = 𝑀 ∪ 𝐿 (assuming  𝑀 ∪ 𝐿 ≠ ∅).  

 

Furthermore, we define the set 𝐷 by  

𝐷 = {𝑑: inf
𝑞∈𝐾

‖𝑓 − 𝑞‖𝑎 ≤ 𝑑 ≤ inf
𝑞∈𝐵

‖𝑓 − 𝑞‖𝑎} 

where,  

𝐵 = {𝑟 ∈ 𝐾: ‖𝑓 − 𝑟‖𝑏 = inf
𝑞∈𝐾

‖𝑓 − 𝑞‖𝑏}. 

 

Theorem 2.2 

An element 𝑝 ∈ 𝐾 is a best vectorial approximation if and only if there exists 𝑑 ∈ 𝐷 and 

 𝛷 ∈ 𝑆∗ 𝑠atisfying 

 ‖𝛷‖𝑏 = 1 

𝛷(𝑓 − 𝑏) = ‖𝑓 − 𝑞‖𝑎 ≤ 𝑑 
and 

𝑅𝑒𝛷(𝑝 − 𝑞) ≤ 0 for all 𝑞 ∈ 𝐾 satisfying ‖𝑓 − 𝑞‖𝑎 ≤ 𝑑. 



3. VECTORIALY MINIMAL PROJECTIONS  

Let 𝛬 = 𝛬(𝑋, 𝑉) be the space of all linear operators from a real or complex space 𝑋 into a finite-

dimensional subspace 𝑉, and let 𝛱 be the family of all operators in 𝛬 with a given fixed action on 

𝑉 (e.g., the identity action corresponds to the family of projections onto 𝑉). Let 𝑋 be equipped 

with norms ‖∙‖𝑖, 𝑖 = 1,2, … , 𝑘 . Let 𝑋𝑖 denote the normed space given by Χ with the norm ‖∙‖𝑖 , 

and define  

‖𝑥‖: = (‖𝑥‖1, ‖𝑥‖2, … , ‖𝑥‖𝑘). 
Define the partial ordering " ⊴ " on 𝑋 by  

 

‖𝑥‖ ⊴ ‖𝑧‖ ⇔ ‖𝑥‖𝑖 ≤ ‖𝑧‖𝑖  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1,2, … , 𝑘. 
We write ‖𝑥‖ ⊲ ‖𝑧‖ if and only if ‖𝑥‖ ⊴ ‖𝑧‖ and ‖𝑥‖ ≠ ‖𝑧‖. 
 

Definition 3.1  

For 𝑄 ∈ 𝛬, let ‖𝑄‖𝑖 denote the operator norm on 𝑋𝑖, let ‖𝑄‖: = (‖𝑄‖1,, ‖𝑄‖2, … , ‖𝑄‖𝑘) and 

define the partial ordering " ⊴ " on 𝛬  by  

‖𝑃‖ ⊴ ‖𝑄‖ ⇔ ‖𝑃‖𝑖 ≤ ‖𝑄‖𝑖 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1,2, … , 𝑘. 
We write ‖𝑃‖ ⊲ ‖𝑄‖ if and only if ‖𝑃‖ ⊴ ‖𝑄‖ and ‖𝑃‖ ≠ ‖𝑄‖. 

𝑃 is a vectorially minimal operator in 𝛱 if there no exist 𝑄 ∈ 𝛱 such that  ‖𝑄‖ ⊲ ‖𝑃‖. 

 

Notation 

The minimal set 𝑀 is given by  

𝑀 ≔ {‖𝑃‖: 𝑃 ∈ 𝛱 𝑖𝑠 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑎𝑙𝑙𝑦 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑛 𝛱}. 
 

Definition 3.2 

For 𝑖 = 1,2, … , 𝑘 (𝑥, 𝑦) ∈ 𝑆(𝑋𝑖
∗∗) × 𝑆(𝑋𝑖

∗) will be called an extremal pair for 𝑄 ∈ 𝛬, if 

〈𝑄𝑖
∗∗𝑥, 𝑦〉 = ‖𝑄‖𝑖, where 𝑄𝑖

∗∗: 𝑋𝑖
∗∗ ⟶ 𝑉 is the second adjoint extension of 𝑄 to  𝑋𝑖

∗∗.  
(𝑆 denotes the unit sphere). 
 

Notation 

Let 𝐸(𝑄) be the set of all extremal pairs for 𝑄. To each (𝑥, 𝑦) ∈ 𝑄  associate the rank-one 

operator 𝑦⨂𝑥 from 𝑋𝑖 to 𝑋𝑖
∗∗ given by (𝑦⨂𝑥)(𝑧) = 〈𝑧, 𝑦〉𝑥 for ∈ 𝑋𝑖 , where 𝑖 is the subscript 

associated with (𝑥, 𝑦). 

 

Theorem 3.1 (Characterization) 

𝑃  has vectorially minimal norm in 𝛱 if and only if the closed convex hull of {𝑦⨂𝑥}(𝑥,𝑦)∈𝐸(𝑃) 

contains an operator 𝐸𝑃 for which 𝑉 is an invariant subspace, i.e.  

𝑬𝑷 = ∫ 𝑦⨂𝑥𝑑𝜇(𝑥, 𝑦) ∶ 𝑉
𝑬(𝑷)

⟶ 𝑉. 

 

Theorem 3.2  

𝑃  has vectorially minimal norm in 𝛱 if and only if there does not exist  

𝐷 ∈ 𝛥 = {𝐷 ∈ 𝛬: 𝐷 = 0 𝑖𝑛 𝑉} such that  

sup
(𝑥,𝑦)∈𝐸(𝑃)

𝑅𝑒〈𝑃𝑖
∗∗𝑥, 𝑦〉〈𝐷∗∗𝑥, 𝑦〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ < 0. 



 

 

4. SOME SPECIAL CASES  

We give some examples of Theorem 2.2.  In the notation of this theorem, let 𝑆 = 𝐶[𝑎, 𝑏],  
𝐾 = 𝛱𝑛[𝑎, 𝑏] (the set of polynomials on [𝑎, 𝑏] of degree less than or equal to 𝑛 ) , ‖∙‖ is the 

supremum norm on [𝑎, 𝑏] and  𝑤1, 𝑤2 ∈ 𝐶[𝑎, 𝑏] two (weight) functions, positive and continuous 

on [𝑎, 𝑏]. 
We introduce extreme points, for a given 𝑓 ∈ 𝐶[𝑎, 𝑏] to be approximated, in connection with the 

next theorem, as follows: 

 

𝑋
+1

= {𝑥 ∈ [𝑎, 𝑏]: 𝑤1(𝑥)(𝑓(𝑥) − 𝑝(𝑥)) = +‖𝑤1(𝑓 − 𝑝)‖} 

𝑋
+2

= {𝑥 ∈ [𝑎, 𝑏]: 𝑤2(𝑥)(𝑓(𝑥) − 𝑝(𝑥)) = +‖𝑤2(𝑓 − 𝑝)‖} 

𝑋
 −1

= {𝑥 ∈ [𝑎, 𝑏]: 𝑤1(𝑥)(𝑓(𝑥) − 𝑝(𝑥)) = −‖𝑤1(𝑓 − 𝑝)‖} 

𝑋
 −2

= {𝑥 ∈ [𝑎, 𝑏]: 𝑤2(𝑥)(𝑓(𝑥) − 𝑝(𝑥)) = −‖𝑤2(𝑓 − 𝑝)‖}. 

 

𝑋
𝑝

= 𝑋
+1

⋃  𝑋
+2

⋃ 𝑋
−1

⋃𝑋
−2

 

The sign function 𝜎(𝑥) on 𝑋
𝑝
 is defined by  

 

𝜎(𝑥) = −1 𝑤ℎ𝑒𝑛 𝑥 ∈ 𝑋
 −1

⋃𝑋
 −2

 

and  

 

 

𝜎(𝑥) = +1 𝑤ℎ𝑒𝑛 𝑥 ∈ 𝑋
+1

⋃𝑋
+2

. 

 

Theorem 4.1 (Application) 

Consider the Vectorial Chebyshev optimization, with 𝑤1 
and 𝑤2 

as defined above. Then 𝑝 is a best 

vec approximation to 𝑓 if and only if there exist 𝑛 + 2 points 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛+2 ∈ 𝑋
𝑝

 ⊂ [𝑎, 𝑏] 

satisfying 

 

𝜎(𝑥𝑖) = (−1)𝑖+1𝜎(𝑥1)  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1,2, … , 𝑛 + 2. 
 

 

Theorem 4.2 

Each best vec approximation is unique; i.e. given 𝜇 ∈ 𝑀  there is only one 𝑝 ∈ 𝛱𝑛[𝑎, 𝑏]
 
such that  

𝐺(𝑝) = 𝜇.  

 

 

Note that this uniqueness does not contradict the fact that the minimal set 𝑀 has, in general, an 

infinite number of points, each of which corresponds to a (unique) best vectorial approximation. 

Likewise, the easily shown existence of 𝑀 proves the existence of best solutions. 

 



Theorem 4.3 (Application) 

Let 𝑋 = 𝐶[𝑎, 𝑏], 𝐾 = 𝛱𝑛[𝑎, 𝑏], ‖ ∙ ‖𝑎 , ‖ ∙ ‖𝑏 the 𝑠𝑢𝑝 and 𝐿2 norms on 𝐶[𝑎, 𝑏] which we denote 

by  ‖ ∙ ‖∞ and ‖ ∙ ‖2 respectively.  

Find the best vectorial approximation 𝑝𝑑 whose error in Chebyshev norm equals a prescribed 

value 𝑑 ∈ 𝑃+, ‖ 𝑓 − 𝑝1 ‖∞ ≤ 𝑑 ≤ ‖ 𝑓 − 𝑝2 ‖∞. It is clear that the desired polynomial 𝑝𝑑  is the 

unique solution to the problem  

min
𝑝∈𝛱𝑛

‖𝑓 − 𝑝‖2 

subject to  

‖ 𝑓 − 𝑝‖∞ ≤ 𝑑. 
 

Since the number of constraints here is infinite, we proceed by solving a sequence of quadratic 

programming problems, each with a finite number of constraints. The sequence of solutions {𝑝𝑘}  

is shown to converge to the theoretical solution 𝑝𝑑 . 
 

Algorithm Corresponding to Theorem 4.3 

At the 𝑘 − 𝑡ℎ step we have from the preceding steps a finite set of points 𝑋𝑘 ⊂ [𝑎, 𝑏]. We solve 

the quadratic program  

min
𝑝∈𝛱𝑛

‖𝑓 − 𝑝‖2 

 

subject to  

‖ 𝑓(𝑥) − 𝑝(𝑥)‖∞ ≤ 𝑑, 𝑥 ∈ 𝑋𝑘. 
Denoting by 𝑝𝑘 the solution of this problem, we calculate a point 𝑥𝑘 ∈ [𝑎, 𝑏] such that 

|𝑓(𝑥𝑘) − 𝑝𝑘(𝑥𝑘)| = ‖ 𝑓 − 𝑝𝑘 ‖∞. 
We form 𝑋𝑘+1 = 𝑋𝑘 ∩ {𝑥𝑘} and proceed to the next cycle. At the beginning 𝑋1 may be an 

arbitrary finite set, containing a maximum of  |𝑓(𝑥) − 𝑝𝐿(𝑥)|. 
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Abstract
The q-Pólya urn is a q-analog of the Pólya urn and is a model of ball extraction from
an urn with balls of two colors, A and B. Balls of color B have priority to be picked
over those of color A. We prove that, in an infinite sequence of extractions, almost
surely, the number of balls of color A that are picked has a finite limit and we identify
its distribution. Then we prove functional limit theorems for the number of balls of
color A extracted. The limit is either a pure birth process or a diffusion, depending on
the initial composition of the urn. Finally, we discuss basic results for the q-Pólya urn
with more than two colors.

Keywords Pólya urn · q-Pólya urn · q-Calculus · Functional limit theorems
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1 Introduction and results

The Pólya urn This is the model where in an urn that has initially a finite number
of white and black balls we draw, successively and uniformly at random, a ball from
it and then we return the ball back together with k balls of the same color as the one
drawn. The number k ∈ N

+ is fixed.
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D. Cheliotis, D. Kouloumpou

Standard references for the theory and the applications of Pólya urn and related
models are [14,17].

The q-Pólya urn This is a q-analog of the Pólya urn (see [10,15] for more on
q-analogs) introduced in [16] and studied further in [4] (see also [5]).

A q-analog of a mathematical object A is another object A(q) so that when q → 1,
A(q) “tends” to A. Take q ∈ (0,∞)\{1}. The q-analog of any x ∈ C is defined as

[x]q := qx − 1

q − 1
. (1)

Note that limq→1[x]q = x .
Now consider an urn that contains a finite number of white and black balls. We

perform a sequence of additions of balls to the urn according to the following rule. If at
a given time the urn contains A1 white and A2 black balls (A1, A2 ∈ N, A1+ A2 > 0),
then we add k white balls with probability

Pq(white) = [A1]q
[A1 + A2]q . (2)

Otherwise, we add k black balls, and this has probability

Pq(black) = 1 − Pq(white) = q A1
[A2]q

[A1 + A2]q . (3)

This stochastic process we call q-Pólya urn. To understand how it works, it helps to
realize the probabilities Pq(white), Pq(black) through the following experiment.

If q ∈ (0, 1), then we put the balls in a line with the A1 white coming first and the
A2 black following. To pick a ball, we go through the line, starting from the beginning
and picking each ball with probability 1−q independently of what happened with the
previous balls. If we finish the line without picking a ball, we start from the beginning.
Once we pick a ball, we return it to its position together with k balls of the same color.
Given these rules, the probability of picking a white ball is

(1 − q A1)

∞∑

j=0

(q A1+A2) j = 1 − q A1

1 − q A1+A2
= [A1]q

[A1 + A2]q , (4)

which is (2), because before picking a white ball, we will go through the entire list a
random number of times, say j , without picking any ball and then, going through the
white balls, we pick one (probability 1 − q A1 ).

If q > 1, we place in the line first the black balls and we go through the list
picking each ball with probability 1 − q−1. According to the above computation, the
probability of picking a black ball is

123
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[A2]q−1

[A1 + A2]q−1
= q A1

[A2]q
[A1 + A2]q ,

which is (3).
We extend the notion of drawing a ball from a q-Pólya urn to the case where

exactly one of A1, A2 is infinity. Then the probability to pick a white (resp. black)
ball is determined again by (2) (resp. (3)), where this is understood as the limit of the
right hand side as A1 or A2 goes to ∞. For example, assuming that A1 = ∞ and
A2 ∈ N, we have Pq(white) = 1 if q < 1 and Pq(white) = q−A2 if q > 1. Again
these probabilities are realized through the experiment described above. Thus, we can
run the process even if we start with an infinite number of balls from one color and
finite from the other.

Consider now a q-Pólya urn having A1(0), A2(0) white and black balls, respec-
tively, and start an infinite sequence of drawings. For n ∈ N

+, denote by A1(n), A2(n)

the numbers of white and black balls, respectively, after n drawings.
We want to study two aspects of the asymptotic behavior of the sequence {A1(n)}n∈N.

(1) The first concerns the limit, in any sense, of A1(n) properly normalized. In the
Pólya urn, if we keep the same notation, the following convergence in distribution

is a well-known fact: A1(n)
A1(n)+A2(n)

d→ Beta (A1(0)/k, A2(0)/k) as n → ∞. For
the q–Pólya urn, things are less exciting. If q > 1, after some point, we will be
drawing only black balls, and consequently A1(n) becomes eventually (a random)
constant A1(∞). We identify the distribution of A1(∞). By the above discussion,
this answers the case q ∈ (0, 1) too. Then, it is A2(n) that becomes eventually
constant.

(2) The second concerns the entire path {A1(n)}n∈N. Is it possible, by applying appro-
priate, natural transformations, to get convergence to a stochastic process? That
is, an analogous result to Donsker’s theorem for simple symmetric random walk
in Z. For the Pólya urn, this question has been investigated in the works [3,7] .

The results concerning these two points are exhibited in the following two subsec-
tions.

1.1 Basic results for the q-Pólya urn

We recall some notation from q-calculus (see [5,15]). For q ∈ (0,∞)\{1}, x ∈ C, k ∈
N

+, we define

[x]q := qx − 1

q − 1
the q-number of x, (5)

[k]q ! := [k]q [k − 1]q · · · [1]q the q-factorial, (6)

[x]k,q := [x]q [x − 1]q · · · [x − k + 1]q the q-factorial of order k, (7)
[
x

k

]

q
:= [x]k,q

[k]q ! the q-binomial coefficient, (8)
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(x; q)∞ :=
∞∏

i=0

(1 − xqi ) when q ∈ [0, 1) the q-Pochhammer symbol. (9)

We extend these definitions in the case k = 0 by letting [0]q ! = 1, [x]0,q = 1.
Now consider a q-Pólya urn that has initially A1 white and A2 black balls, where

A1 ∈ N ∪ {∞} and A2 ∈ N. Call H1(n) the number of drawings that give white ball
in the first n drawings. Its distribution is specified by the following.

Fact 1 Let Â1 := A1/k and Â2 := A2/k.

(i) If A1 ∈ N, then the probability mass function of H1(n) is

P (H1(n) = x) = qk(n−x)( Â1+x)

[− Â1
x

]
q−k

[− Â2
n−x

]
q−k

[− Â1− Â2
n

]
q−k

(10)

= q−A2x

[ Â1+x−1
x

]
q−k

[ Â2+n−x−1
n−x

]
q−k

[ Â1+ Â2+n−1
n

]
q−k

(11)

= q−kx( Â2+n−x)

[− Â1
x

]
qk

[− Â2
n−x

]
qk

[− Â1− Â2
n

]
qk

(12)

for all x ∈ {0, 1, . . . , n}.
(ii) If A1 = ∞ and q > 1, then the probability mass function of H1(n) is

P (H1(n) = x) =
[
n

x

]

q−k
q−A2x

n−x∏

j=1

(1 − q−A2(q−k) j−1) (13)

for all x ∈ {0, 1, . . . , n}. This is the probability mass function of the q-binomial
distribution of the second kind with parameters n, q−A2 , q−k (see Theorem 3.2
in [5]). If A1 = ∞ and q ∈ (0, 1), then P(H1(n) = n) = 1 obviously.

Relation (10) is (3.2) in [4], where it is proved through recursion. In Sect. 2 we give
an alternative proof.

According to the experiment described in Sect. 1, the balls that are placed first in
the line have an advantage to be picked (the white if q ∈ (0, 1), the black if q > 1). In
fact, this leads to the extinction of drawings from the balls of the other color; there is
a point after which the number of balls in the urn of that color stays fixed to a random
number. In the next theorem, we identify the distribution of this number. We treat the
case q > 1.

Theorem 1 (Extinction of the second color) Assume that q > 1, A1 ∈ N∪{∞}, A2 ∈
N. With probability one, as n → ∞, {H1(n)}n≥1 converges to a random variable
H1(∞) with values in N and probability mass function
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(i)

f (x) =
[ A1

k + x − 1

x

]

q−k
q−A2x (q−A2; q−k)∞

(q−A1−A2; q−k)∞
(14)

for all x ∈ N in the case A1 ∈ N and
(ii)

f (x) =
(

q−A2

1 − q−k

)x
1

[x]q−k ! (q
−A2; q−k)∞ (15)

for all x ∈ N in the case A1 = ∞.

When A1 ∈ N, the random variable H1(∞) has the negative q-binomial distribution
of the second kind with parameters A1/k, q−A2 , q−k . We recall here that for ν ∈
(0,∞), θ ∈ (0, 1), and q ∈ (0, 1), the function f : R → [0,∞) with

f (x) =
[
ν + x − 1

x

]

q
θ x (θ; q)∞

(θqν; q)∞
(16)

for x ∈ N and f (x) = 0 for x ∈ R\N defines the probability mass function of
a distribution with support N ( f sums to 1 due to the q-binomial theorem, relation
(1.3.2) in [10]). We call this distribution negative q-binomial of the second kind with
parameters ν, θ, q (see §3.1 of [5]). When ν ∈ N

+, formula (16) simplifies to

f (x) =
[
ν + x − 1

x

]

q
θ x

ν∏

j=1

(1 − θq j−1). (17)

When A1 = ∞, H1(∞) has the Euler distribution with parameters q−A2/(1 −
q−k), q−k (see §3.3 in [5] again).

1.2 Functional scaling limits

Consider a q-Pólya urn whose initial composition depends on m ∈ N
+. That is, it

has A(m)
1 (0), A(m)

2 (0) white and black balls, respectively. Start an infinite sequence of

drawings and for n ∈ N
+, denote by A(m)

1 (n), A(m)
2 (n) the numbers of white and black

balls, respectively, after n drawings.
To see a new process arising out of the path of {A(m)

1 (n)}n≥0, we start with an initial

number of balls that tends to infinity as m → ∞. We assume that A(m)
2 (0) grows

linearly with m. Regarding A(m)
1 (0), we study three regimes:

(a) A(m)
1 (0) stays fixed with m.

(b) A(m)
1 (0) grows to infinity but sublinearly with m.

(c) A(m)
1 (0) grows linearly with m.
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The regime where A(m)
1 (0) grows superlinearly with m follows from regime b) by

changing the roles of the two colors. We remark on this after Theorem 3.
The other parameter that we have to tune is q. If q is kept fixed, then:

(i) if q > 1, then nothing interesting happens because the assumption
limm→∞ A(m)

2 (0) = ∞ implies that the process {A(m)
1 (n)}n≥0 converges (as

m → ∞) to the one that never increases (we always pick a black ball) and
(ii) if q < 1, then in the scenario limm→∞ A(m)

1 (0) = ∞ the situation is analogous to

(i) while in the scenario that A(m)
1 (0) stays fixed withm the process {A(m)

1 (n)}n≥0
converges (as m → ∞) to the q-Polya urn with A2 = ∞.

Interesting limits appear once we take q = qm to depend on m and approach 1 as
m → ∞. We study the case that qm > 1 and the distance of qm from 1 is Θ(1/m)

and remark on the case that the distance is o(1/m).
In the regimes (a) and (b), the scarcity of white balls has as a result that the time

between two consecutive drawings of awhite ball is large.We expect then that speeding
up time by an appropriate factor we will see a birth process. And indeed this is the
case as our first two theorems show.

All processes appearing in this work with index set [0,∞) and values in some
Euclidean space Rd are elements of DRd [0,∞), the space of functions f : [0,∞) →
R
d that are right continuous and have limits from the left at each point of [0,∞). This

space is endowed with the Skorokhod topology (defined in §5 of Chapter 3 of [9]), and
convergence in distribution of processes with values on that space is defined through
that topology.

We remind the reader that the negative binomial distribution with parameters ν ∈
(0,∞) and p ∈ (0, 1) is the distribution with support in N and probability mass
function

f (x) =
(

ν + x − 1

x

)
pν(1 − p)x (18)

for all x ∈ N. When ν ∈ N
+, this is the distribution of the number of failures until we

obtain the ν-th success in a sequence of independent trials, each having probability of
success p. For a random variable X with this distribution, we write X ∼ N B(ν, p).

In all results of this subsectionwe assume that the parameter of the urn is qm = c1/m

with c > 1.

Theorem 2 Fix w0 ∈ N
+ and b > 0. If A(m)

1 (0) = w0 for all m ∈ N
+ and

limm→∞ A(m)
2 (0)/m = b, then, as m → ∞, the process (k−1{A(m)

1 ([mt]) −
A(m)
1 (0)})t≥0 converges in distribution to an inhomogeneous in time pure birth process

Z with Z(0) = 0 and such that for all 0 ≤ t1 < t2, j ∈ N, the random variable

Z(t2) − Z(t1)|Z(t1) = j has distribution N B
(w0

k
+ j,

1 − c−b−kt1

1 − c−b−kt1

)
.
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In particular, Z has rates

λt, j = w0 + jk

cb+kt − 1
log c (19)

for all (t, j) ∈ [0,∞) × N.

Theorem 3 Assume that A(m)
1 (0) = gm and limm→∞ A(m)

2 (0)/m = b, where b ∈
(0,∞) and gm ∈ N

+, gm → ∞, gm = o(m) as m → ∞. Then, as m → ∞, the
process

(k−1{A(m)
1 ([tm/gm]) − A(m)

1 (0)})t≥0

converges in distribution to the Poisson process on [0,∞) with rate

log c

cb − 1
. (20)

We return to the discussion at the beginning of the subsection. The regime where
limm→∞ A(m)

2 (0)/m = b > 0 and A(m)
1 (0)/m → ∞ is covered by the previous

theorem. We need to change the roles of the colors and remark that the role of m as a
scaling parameter is played now by am := A(m)

1 (0). The result that we obtain is that
in the q-Pólya urn with qm := c1/am and c > 1, the process

1

k

(
A(m)
2 ([tam/(bm)]) − A(m)

2 (0)
)

t≥0

converges in distribution, as m → ∞, to the Poisson process on [0,∞) with rate
(log c)/(c − 1).

Theorem 4 Assume that A(m)
1 (0), A(m)

2 (0) are such that limm→∞ A(m)
1 (0)/m = a,

limm→∞ A(m)
2 (0)/m = b, where a, b ∈ [0,∞) are not both zero. Then, as m → +∞,

the process
(
A(m)
1 ([mt])/m

)

t≥0
converges in distribution to the unique solution of the

differential equation

X0 = a, (21)

dXt = k
1 − cXt

1 − ca+b+kt
dt, (22)

which is

Xt := a − 1

log c
log

(
cb − 1 + c−kt (1 − c−a)

cb − c−a

)
(23)

for all t ≥ 0.
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Next, we determine the fluctuations of the process (A(m)
1 ([mt])/m)t≥0 around its

m → ∞ limit, X . Let

C (m)
t = √

m

(
A(m)
1 ([mt])

m
− Xt

)
(24)

for all m ∈ N
+ and t ≥ 0.

Theorem 5 Let a, b ∈ [0,∞), not both zero, θ1, θ2 ∈ R, and assume that A(m)
1 (0) :=

[am+ θ1
√
m], A(m)

2 (0) = [bm+ θ2
√
m] for all large m ∈ N. Then, as m → +∞, the

process (C (m)
t )t≥0 converges in distribution to the unique solution of the stochastic

differential equation

Y0 = θ1,

dYt = k log c

ca+b+kt − 1

{
(ca+b − 1)Yt − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kt (1 − c−a)

}
dt

+ k
√

(ca − 1)(cb − 1)
c(a+kt)/2

ca+b+kt − ca+kt + ca − 1
dWt ,

(25)

which is

Yt = ca+b+kt − 1

ca+b+kt − ca+kt + ca − 1

(
θ1 − (θ1 + θ2)

ca+b(ca − 1)

ca+b − 1

ckt − 1

ca+b+kt − 1

+ k
√

(ca − 1)(cb − 1)
∫ t

0

c(a+kt)/2

ca+b+kt − 1
dWs

) (26)

for all t ≥ 0. W is a standard Brownian motion

Remark If we assume that q = q(m) := cεm/m where c > 1 and εm → 0+ as
m → ∞, then q = 1 + o(m−1). With computations analogous to those of the results
of the previous subsection, it is easy to see that the limits of the processes considered
in all theorems of this subsection coincide with those in the case of the plain Pólya
urn (i.e., when q = 1), which are described in the work [7]. Of course, in (24), the
role of Xt will be played by the limit one gets from the analogous to Theorem 4.

1.3 q-Pólya urn withmany colors

In this paragraph, we give a q-analog for the Pólya urn with more than two colors. The
way to do the generalization is inspired by the experiment we used in order to explain
relation (2).

Let l ∈ N, l ≥ 2, and q ∈ (0, 1). Assume that we have an urn containing Ai balls
of color i for each i ∈ {1, 2, . . . , l}. To draw a ball from the urn, we do the following.
We order the balls in a line, first those of color 1, then those of color 2, and so on.
Then we visit the balls, one after the other, in the order that they have been placed,
and we select each with probability 1 − q independently of what happened with the
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previous balls. If we go through all balls without picking any, we repeat the same
procedure starting from the beginning of the line. Once a ball is selected, the drawing
is completed. We return the ball to its position together with another k of the same
color. For each i = 0, 1, . . . , l, let si = ∑

1≤ j≤i A j . Notice that sl is the total number
of balls in the urn. Then, working as for (4), we see that

P(color i is drawn) = qsi−1
1 − q Ai

1 − qsl
= qsi−1 − qsi

1 − qsl
= qsi−1

[Ai ]q
[sl ]q . (27)

Call pi the number in the last display for all i = 1, 2, . . . , l. Note that when q → 1,
pi converges to Ai/sl , which is the probability for the usual Pólya urn with l colors.
It is clear that for any given q ∈ (0,∞)\{1}, the numbers p1, p2, . . . , pl are non-
negative and add to 1 (the second fraction in (27) shows this). We define then for this
q the q-Pólya urn with colors 1, 2, . . . , l to be the sequential procedure in which, at
each step, we add k balls of a color picked randomly among {1, 2, . . . , l} so that the
probability that this color is i is pi .

When q > 1, these probabilities come out of the experiment described above but
in which we place the balls in reverse order (that is, first those of color l, then those of
color l − 1, and so on) and we go through the list selecting each ball with probability
1 − q−1. It is then easy to see that the probability to pick a ball of color i is pi .

Theorem 6 Assume that q ∈ (0, 1) and that we start with A1, A2, . . . , Al balls from
colors 1, 2, . . . , l respectively, where A1, A2, . . . , Al ∈ N are not all zero. Call Hi (n)

the number of times in the first n drawings that we picked color i . The probability
mass function for the vector (H2(n), H3(n), . . . , Hl(n)) is

P (H2(n) = x2, . . . , Hl(n) = xl) = q
∑l

i=2 xi
∑i−1

j=1(A j+kx j)

∏l
i=1

[− Ai
k

xi

]
q−k

[− A1+A2 ...+Al
k
n

]
q−k

(28)

=
[

n

x1, x2, . . . , xl

]

q−k

q
∑l

i=2 xi
∑i−1

j=1(A j+kx j) ∏l
i=1

[
− Ai

k

]

xi ,q−k
[
− A1+A2+...+Al

k

]

n,q−k

(29)

for all x2, . . . , xl ∈ {0, 1, 2, . . . , n} with x2 + · + xl ≤ n, where x1 := n − ∑l
i=2 xi

and
[ n
x1,x2,...,xl

]
q−k := [n]q−k !

[x1]q−k !·...·[xl ]q−k ! is the q-multinomial coefficient.

This theorem has also been derived in [6] (Theorem 3.1 of that work) with a different
proof than ours, based on a recursion relation.

It follows from Theorem 1 that when q ∈ (0, 1), after some random time, we will
be picking only balls of color 1. So that the number of times, say Hi , that we pick color
i , where i = 2, 3, . . . , l, is finite. The next theorem identifies the joint distribution of
H2, H3, . . . , Hl .

Theorem 7 Under the assumptions of Theorem 6, with probability one, as n → +∞,

the vector (H2(n), H3(n), . . . , Hl(n)) converges to a randomvector (H2(∞), H3(∞),
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. . . , Hl(∞)) with values in Nl−1 and probability mass function

f (x2, x3, . . . , xl) = q
∑l

i=2 xi
∑i−1

j=1 A j

l∏

i=2

[
xi + Ai

k − 1

xi

]

qk

(q A1; qk)∞
(q A1+···+Al ; qk)∞ (30)

for all x2, . . . , xl ∈ N.

Note that the random variables H2(∞), . . . , Hl(∞) are independent although
(H2(n), H3(n), . . . , Hl(n)) are dependent.

Next, we look for a scaling limit for the path of the process. For each m ∈ N
+, we

consider a q-Pólya urn with initial composition (A(m)
1 (0), A(m)

2 (0), . . . , A(m)
l (0)) and

qm that will be specified below. Let A(m)
i ( j) be the number of balls of color i in this

urn after j drawings.

Theorem 8 Assume that c ∈ (0, 1), qm = c1/m for all m ∈ N
+, and

1

m

(
A(m)
1 (0), A(m)

2 (0), . . . , A(m)
l (0)

)
m→∞→ (a1, a2, . . . , al) ,

where a1, . . . , al ∈ [0,∞) are not all zero. Set σ0 = 0 and σi := ∑
j≤i a j for all

i = 1, 2, . . . , l. Then the process 1
m

(
A(m)
1 ([mt]), A(m)

2 ([mt]), . . . , A(m)
l ([mt])

)

t≥0
converges in distribution, as m → +∞, to (Xt,1, Xt,2, . . . , Xt,l)t≥0 with

Xt,i = ai + 1

log c
log

(1 − cσl+kt ) − cσi−1(1 − ckt )

(1 − cσl+kt ) − cσi (1 − ckt )
(31)

for all i = 1, 2, . . . , l.

Theorem 9 Assume that c ∈ (0, 1), qm = cεm/m for allm ∈ N
+ with limm→∞ εm = 0,

and

1

m

(
A(m)
0,1 , A(m)

0,2 , . . . , A(m)
0,l

)
m→∞→ (a1, a2, . . . , al) ,

where a1, . . . , al ∈ [0,∞) are not all zero. Then the process 1
m

(
A(m)

[mt],1, A
(m)
[mt],2,…,

A(m)
[mt],l

)
t≥0 converges in distribution, as m → +∞, to (Xt )t≥0 with

Xt =
(
1 + kt

a1 + · · · + al

)
(a1, a2, . . . , al) (32)

for all t ≥ 0.

Remark Discussing this preprint with Prof. Ch. Charalambides, wewere informed that
he considered this q-Pólya urn with many colors in a work that was then in progress
and now has appeared [6]. That work studies other aspects of the urn, and the only
common result with the present work is Theorem 6.
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Orientation. In Sect. 2, we prove Fact 1 and Theorem 1, which are basic results for
the q-Pólya urn. Section 3 (Sect. 4) contains the proofs of the theorems that give
convergence to a jump process (to a continuous process). Finally, Sect. 5 contains
the proofs for the results that refer to the q-Pólya urn with arbitrary, finite number of
colors.

2 Prevalence of a single color

In this section, we prove the claims of Sect. 1.1. Before doing so, we mention three
properties of the q-binomial coefficient. For all q ∈ (0,∞)\{1}, x ∈ C, n, k ∈ Nwith
k ≤ n it holds

[−x]q = −q−x [x]q , (33)
[−x

k

]

q
= (−1)kq−k(k+2x−1)/2

[
x + k − 1

k

]

q
, (34)

[
x

k

]

q−1
= q−k(x−k)

[
x

k

]

q
, (35)

∑

1≤i1<i2<···<ik≤n

qi1+i2+···+ik = q(k+1
2 )

[
n

k

]

q
. (36)

The first is trivial, the second follows from the first, the third is easily shown, while
the last is Theorem 6.1 in [15].

Proof of Fact 1 (i) The probability to get black balls exactly at the drawings i1 < i2 <

· · · < in−x is

g(i1, i2, . . . , in−x ) =
∏x−1

j=0[A1 + jk]q ∏n−x−1
j=0 [A2 + jk]q

∏n−1
j=0[A1 + A2 + jk]q

q
∑n−x

ν=1 {A1+(iν−ν)k}.

(37)

To see this, note that, due to (2) and (3), the required probability would be equal to
the above fraction if in (3) the term q A1 were absent. This term appears whenever we
draw a black ball. Now, when we draw the ν-th black ball, there are A1 + (iν − ν)k
white balls in the urn, and this explains the exponent of q in (37).

Since [x + jk]q = 1−qx+ jk

1−q = [− x
k − j]q−k [−k]q for all x, j ∈ R, the fraction in

(37) equals

[− Â1]x,q−k [− Â2]n−x,q−k

[− Â1 − Â2]n,q−k

. (38)
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Then

∑

1≤i1<i2<···<in−x≤n

q
∑n−x

ν=1 A1+(iν−ν)k (39)

= q(n−x)A1−k(n−x)(n−x+1)/2
∑

1≤i1<i2<···<in−x≤n

(qk)i1+i2+···+in−x (40)

= q(n−x)A1−k(n−x)(n−x+1)/2qk(
n−x+1

2 )
[
n

x

]

qk
(41)

= q(n−x)A1qkx(n−x)
[
n

x

]

q−k
= qk(n−x)( Â1+x)

[
n

x

]

q−k
. (42)

The second equality follows from (36) and the equality
[n
x

]
qk = [ n

n−x

]
qk
. The third,

from (35). Thus, employing (8) too, we obtain that the sum∑
1≤i1<i2<···<in−x≤n g(i1, i2, . . . , in−x ) equals the right hand side of (10). Then (11)

and (12) follow by using (34) and (35) respectively.
(ii) In this scenario, we take A1 → ∞ in (11).Wewill explain shortlywhy this gives

the probability we want. Since q−k ∈ (0, 1), we have limt→∞[t]q−k = (1 − q−k)−1

and thus, for each ν ∈ N, it holds

lim
t→∞

[
t + ν − 1

ν

]

q−k
= 1

[ν]q−k !
1

(1 − q−k)ν
. (43)

Applying this twice in (11) (there Â1 = A1/k → ∞), we get as limit

q−A2x
[
Â2 + n − x − 1

n − x

]

q−k

[n]q−k !(1 − q−k)n−x

[x]q−k !
(44)

=
[
n

x

]

q−k
q−A2x (1 − q−k)n−x [ Â2 + n − x − 1]n−x,q−k , (45)

which equals the right hand side of (13).
Now, to justify that passage to the limit A1 → ∞ in (11) gives the required result,we

argue as follows. For clarity, denote the probability Pq(white) when there are w white
and b black balls in the urn by Pw,b

q (white). And when there are A1 white and A2 black
balls in the urn in the beginning of the procedure, denote the probability of the event
H1(n) = x by PA1,A2(H1(n) = x). It is clear that the probability PA1,A2(H1(n) = x)
is a continuous function (in fact, a polynomial) of the quantities

PA1+ki,A2+k j
q (white) : i = 0, 1, . . . , x − 1, j = 0, 1, . . . , n − x − 1,

for all values of A1 ∈ N ∪ {∞}, A2 ∈ N. In P∞,A1(H1(n) = x), each such quantity,
P∞,m
q (white), equals limA1→∞ PA1,m(white).

Thus P∞,A2(H1(n) = x) = limA1→∞ PA1,A2(H1(n) = x). 
�
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Limit behavior of the q-Pólya urn

Before proving Theorem 1, we give a simple argument that shows that eventually
we will be picking only black balls. That is, the number H1(∞) := limn→∞ H1(n) of
white balls drawn in an infinite sequence of drawings is finite. It is enough to show it
in the case that A1 = ∞ and A2 = 1 since, by the experiment that realizes the q-Pólya
urn, we have (using the notation from the proof of Fact 1 (ii))

PA1,A2(H1(∞) = ∞) ≤ P∞,1(H1(∞) = ∞).

For each n ∈ N
+, call En the event that at the n-th drawing we pick a white ball, Bn

the number of black balls present in the urn after that drawing (also, B0 := 1), and
write q̂ := 1/q. Then P(En) = E(P(En|Bn−1)) = E(q̂ Bn−1). We will show that this
decays exponentially with n. Indeed, since at every drawing there is probability at least
1− q̂ to pick a black ball, we can construct in a common probability space the random
variables (Bn)n≥1 and (Yi )i≥1 so that the Yi are i.i.d. with Y1 ∼ Bernoulli(1− q̂) and
Bn ≥ 1 + k(Y1 + · · · + Yn) for all n ∈ N

+. Consequently,

P(En) ≤ E(q̂1+k(Y1+···+Xn−1)) = q̂{E(q̂kY1)}n−1.

This implies that
∑∞

n=1 P(En) < ∞, and the first Borel–Cantelli lemma gives that
P∞,1(H1(∞) = ∞) = 0.

Proof of Theorem 1 Since {H1(n)}n≥1 is increasing, it converges to a random variable
H1(∞)with values inN∪{∞}. In particular, it converges to this variable in distribution.
Our aim is to take the limit as n → ∞ in (11) and in (13) in order to determine the
distribution of H1. Note that for a ∈ R and θ ∈ [0, 1) it is immediate that (recall (9)
for the notation)

lim
n→∞

[
a + n

n

]

θ

= (θa+1; θ)∞
(θ; θ)∞

. (46)

(i) Taking n → ∞ in (11) and using (46), we get the required expression, (14), for
f . Then relation (2.2) in [4] (or (8.1) in [15]) shows that

∑
x∈N f (x) = 1, so that

it is a probability mass function of a random variable H1 with values in N.
(ii) This follows after taking limit in (13) and using (46) and limn→∞(1 −

q−k)n[n]q−k ! = (q−k; q−k)∞. 
�

3 Jump process limits. Proof of Theorems 2, 3

In the case of Theorem 2, we let gm := 1 for allm ∈ N
+, and for both theorems we let

v := vm := m/gm . Our interest is in the sequence of the processes (Z (m))m≥1 with

Z (m)(t) = 1

k

{
A(m)
1 ([vt]) − A(m)

1 (0)
}

(47)

for all t ≥ 0.
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To show convergence in distribution, according to Theorem 7.8 of Chapter 3 of [9],
it is enough to show that the sequence (Z (m))m≥1 is tight and its finite dimensional
distributions converge. The description of the limiting process is obtained on the way.

An easy argument shows that tightness follows from the convergence of the finite
dimensional distributions because each Z (m) has non decreasing paths. It thus remains
to establish the convergence of the finite dimensional distributions.
Notation For sequences (an)n∈N, (bn)n∈N with values in R, we will say that they are
asymptotically equivalent, and will write an ∼ bn as n → ∞, if limn→∞ an/bn = 1.
We use the same expressions for functions f , g defined in a neighborhood of ∞ and
satisfy limx→∞ f (x)/g(x) = 1.

3.1 Convergence of finite dimensional distributions

By definition, Z (m)(0) = 0 = Z(0) for all m ∈ N
+.

Since for each m ≥ 1 the process Z (m) is Markov taking values in N and non
decreasing in time, it is enough to show that the conditional probability

P(Z (m)(t2) = k2|Z (m)(t1) = k1) (48)

converges as m → ∞ for each 0 ≤ t1 < t2 and non-negative integers k1 ≤ k2.
Define

n := [vt2] − [vt1], (49)

x := k2 − k1, (50)

σ := A(m)
1 (0) + kk1

k
, (51)

τ := k[vt1] − kk1 + A(m)
2 (0)

k
, (52)

r := q−k
m = c−k/m . (53)

Then, the probability in (48), with the help of (11), is computed as

r τ x
[
σ + x − 1

x

]

r

[
τ+n−x−1

n−x

]
r[

σ+τ+n−1
n

]
r

= r τ x
[
σ + x − 1

x

]

r

(
n∏

i=n−x+1

(1 − r i )

)
1

∏n−1
i=n−x (1 − r τ+i )

[τ + n − 1]n,r

[σ + τ + n − 1]n,r
.

(54)

The last ratio is

n−1∏

i=0

1 − r τ+i

1 − rσ+τ+i
=

n−1∏

i=0

(
1 − (1 − rσ )r τ r i

1 − rσ+τ+i

)
. (55)
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Denote by 1− am,i the i-th term of the product. The logarithm of the product equals

− (1 − rσ )r τ
n−1∑

i=0

r i

1 − rσ+τ+i
+ o(1) (56)

as m → ∞. To justify this, note that 1 − rσ ∼ 1
m (A(m)

0 + kk1) log c and r τ+i/(1 −
rσ+τ+i ) ≤ 1/(1 − c−b) for all i ∈ N. Thus, for all large m, |am,i | < 1/2 for all
i = 0, 1, . . . , n−1, and the error in approximating the logarithm of 1−am,i by−am,i

is at most |am,i |2 (by Taylor’s expansion, we have | log(1 − y) + y| ≤ |y|2 for all y
with |y| ≤ 1/2). The sum of all errors is at most nmax0≤i<n |am,i |2, which goes to
zero as m → ∞ because 1 − rσ ∼ C/n for some appropriate constant C > 0.

We will compute the limit of (54) as m → ∞ under the assumptions of Theo-
rems 2, 3.

Proof (The computation for Theorem 2) As m → ∞, the first term of the product

in (54) converges to c−x(b+kt1). The q-binomial coefficient converges to
(k−1w0+k2−1

k2−k1

)
.

The third term converges to (1 − c−k(t2−t1))x , while the denominator of the fourth
term converges to (1− ρ2)

x , where we set ρi := c−b−kti for i = 1, 2. The expression
preceding o(1) in (56) is asymptotically equivalent to

− k

m
σ(log c)ρ1

n−1∑

i=0

c−ki/m

1 − rσ+τ c−ki/m
(57)

= −ρ1kσ(log c)
1

m

n−1∑

i=0

c−ki/m

1 − ρ1c−ki/m
+ o(1) (58)

= −ρ1kσ log c
∫ t2−t1

0

1

cky − ρ1
dy + o(1) = σ log

1 − ρ1

1 − ρ2
+ o(1). (59)

The first equality is true because limm→∞ rσ+τ = ρ1 and the function x �→
c−ki/m/(1 − xc−ki/m) has derivative bounded uniformly in i,m when x is confined
to a compact subset of [0, 1). Thus, the limit of (54), as m → ∞, is

(
σ + x − 1

x

) (
ρ1 − ρ2

1 − ρ2

)x (
1 − ρ1

1 − ρ2

)σ

, (60)

which means that, asm → ∞, the distribution of {Z (m)(t2)− Z (m)(t1)}|Z (m)(t1) = k1
converges to the negative binomial distribution with parameters σ, (1− ρ1)/(1− ρ2).


�
Proof (The computation for Theorem 3) Now the term r τ x converges to c−xb, while

[
σ + x − 1

x

]

r

( n∏

i=n−x+1

(1 − r i )
)

=
∏x−1

i=0 (1 − rσ+i )∏x
i=1(1 − r i )

( n∏

i=n−x+1

(1 − r i )
)

(61)
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∼
∏x−1

i=0 (σ + i)∏x
i=1 i

((t2 − t1)k log c)x

gxm
∼ 1

x ! ((t2 − t1) log c)
x . (62)

The denominator of the fourth term in (54) converges to (1 − c−b)x . The expression
in (56) is asymptotically equivalent to

− r τ (1 − rσ )

n−1∑

i=0

r i

1 − rσ+τ+i
∼ −c−b gm

m
log c

n

1 − c−b

∼ − log c

cb − 1
(t2 − t1). (63)

In the first ∼, we used the fact that the terms of the sum, as m → ∞, converge
uniformly in i to (1 − c−b)−1. Thus, the limit of (54), as m → ∞, is

1

x !
(

log c

cb − 1
(t2 − t1)

)x

e
− log c

cb−1
(t2−t1)

, (64)

which means that, asm → ∞, the distribution of {Z (m)(t2)− Z (m)(t1)}|Z (m)(t1) = k1
converges to the Poisson distribution with parameter t2−t1

cb−1
log c. 
�

3.2 Conclusion

It is clear from the form of the finite dimensional distributions that in both Theorems 2,
3 the limiting process Z is a pure birth process that does not explode in finite time. Its
rate at the point (t, j) ∈ [0,∞) × N is

λt, j = lim
h→0+

1

h
P(Z(t + h) = j + 1|Z(t) = j)

and is found as stated in the statement of each theorem.

4 Deterministic and diffusion limits. Proof of Theorems 4, 5

These theorems are proved with the use of Theorem 7.1 in Chapter 8 of [8], which
is concerned with convergence of time-homogeneous Markov chains to diffusions.
The chains whose convergence is of interest to us are time inhomogeneous, but we
reduce their study to the time-homogeneous setting by considering for each such chain
{Zn}n∈N the time-homogeneous chain {(Zn, n)}n∈N. The following consequence of
the aforementioned theorem suffices for our purposes.

Corollary 1 Assume that for each m ∈ N
+, (Z (m)

n )n∈N is a Markov chain in R. For
each m ∈ N

+ and n ∈ N, let ΔZ (m)
n := Z (m)

n+1 − Z (m)
n and

μ(m)(x, n) := mE(ΔZ (m)
n 1|ΔZ (m)

n |≤1
|Z (m)

n = x), (65)

123



Limit behavior of the q-Pólya urn

a(m)(x, n) := mE((ΔZ (m)
n )21|ΔZ (m)

n |≤1
|Z (m)

n = x) (66)

for all x ∈ R with P(Z (m)
n = x) > 0. Also, for R > 0 and for the same m, n as above,

let A(m, n, R) := {(x, n) : |x | ≤ R, n/m ≤ R,P(Z (m)
n = x) > 0}.

Assume that there are continuous functions μ, a : R × [0,∞) → R and x0 ∈ R

so that:
For every R, ε > 0, it holds

(i) sup(x,n)∈A(m,n,R) |μ(m)(x, n) − μ(x, n/m)| → 0 as m → ∞.
(ii) sup(x,n)∈A(m,n,R) |a(m)(x, n) − a(x, n/m)| → 0 as m → ∞.

(iii) sup(x,n)∈A(m,n,R) mP(|ΔZ (m)
n | ≥ ε|Z (m)

n = x) → 0 as m → ∞.

And also

(iv) Z (m)
0 → x0 as m → ∞ with probability 1.

(v) For each x ∈ R, the stochastic differential equation

dZt = μ(Zt , t) dt + √
a(Zt , t) dBt ,

Z0 = x,
(67)

where B is a one dimensional Brownian motion, has a weak solution which is
unique in distribution.

Then, asm → ∞, the process (Z (m)
[mt])t≥0 converges in distribution to theweak solution

of (67) with x = x0.

Proof For eachm ∈ N
+, we consider the process Y (m)

n := (Z (m)
n , n/m), n ∈ N, which

is a time-homogeneous Markov chain with values in R
2, and we apply Theorem 7.1

in Chapter 8 of [8] Conditions (i), (ii), (iii) of that theorem follow from our conditions
(ii), (i), (iii), respectively, while condition (A) there translates to the requirement that
the martingale problem for the functions μ and

√
a is well posed, and this follows

from condition (v). 
�
The tool we will use in checking that condition (v) of the corollary is satisfied

is the well known existence and uniqueness theorem for strong solutions of SDEs
which requires that for all T > 0, the coefficients μ(x, t),

√
a(x, t) are Lipschitz in x

uniformly for t ∈ [0, T ] and supt∈[0,T ]{|μ(0, t)| + a(0, t)} < ∞ (e.g., Theorem 2.9
of Chapter 5 or [8]). The same conditions imply uniqueness in distribution.

4.1 Proof of Theorem 4

We will apply Corollary 1. For each m ∈ N
+, consider the Markov chain Z (m)

n =
A(m)
1 (n)

m , n ∈ N. Fromanygiven state x of Z (m)
n , the chainmoves to either of x+km−1, x

with corresponding probabilities p(x, n,m), 1 − p(x, n,m), where

p(x, n,m) := 1 − qmx
m

1 − q
A(m)
1 (0)+A(m)

2 (0)+kn
m

.
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In particular, for any ε > 0, is holds |ΔZ (m)
n | < 1 ∧ ε for m large enough. Thus,

condition (i i i) of the corollary is satisfied trivially. Also, for largem, with the notation
of the corollary, we have

μ(m)(x, n) = kp(x, n,m), (68)

a(m)(x, n) = k

m
p(x, n,m). (69)

And it is easy to see that conditions (i), (i i) are satisfied by the functions a, μ with
a(x, t) = 0 and μ(x, t) = kp(x, t) where

p(x, t) := 1 − cx

1 − ca+b+kt
. (70)

Now, for each x ∈ R, the equation

dZt = kp(Zt , t) dt,

Z0 = x
(71)

has a unique solution. Thus, Corollary 1 applies. In fact, (71) is a separable ordinary
differential equation and its unique solution is the one given in the statement of the
theorem.

4.2 Proof of Theorem 5

For each m ∈ N
+, consider the Markov chain

Z (m)
n = √

m
( A(m)

1 (n)

m
− Xn/m

)
, n ∈ N.

From any given state x of Z (m)
n , the chain moves to either of

x + km−1/2 + √
m(Xn/m − X(n+1)/m), (72)

x + √
m(Xn/m − X(n+1)/m) (73)

with corresponding probabilities p(x, n,m), 1 − p(x, n,m), where

p(x, n,m) = [A(m)
1 (n)]qm

[A(m)
1 (0) + A(m)

2 (0) + kn]qm
(74)

and

A(m)
1 (n) = mXn/m + x

√
m, (75)

A(m)
2 (n) = A(m)

1 (0) + A(m)
2 (0) + kn − A(m)

1 (n). (76)
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For convenience, let ΔXn/m = X(n+1)/m − Xn/m . We compute

E
[
ΔZ (m)

n |Z (m)
n = x

]
= k√

m
p(x, n,m) − √

mΔXn/m, (77)

E
[
(ΔZ (m)

n )2|Z (m)
n = x

]
=

(
k2

m
− 2kΔXn/m

)
p(x, n,m) + m(ΔXn/m)2. (78)

The asymptotics of these expectations are as follows.
Claim Fix R > 0. For n such that τ := n/m ≤ R and as m → ∞, we have

(a) E
[
ΔZ (m)

n |Z (m)
n = x

]

= 1

m

k log c

ca+b+kτ − 1

(
cXτ x − (cXτ − 1)ca+b+kτ

ca+b+kτ − 1
(θ1 + θ2)

)
+ O

(
1

m3/2

)

(79)

(b) E
[
(ΔZ (m)

n )2|Z (m)
n = x

]
= 1

m
k2g(τ ){1 − g(τ )} + O

(
1

m3/2

)
(80)

where g(t) := cXt −1
ca+b+kt−1

for all t ≥ 0.

Proof of the claim We examine the asymptotics of p(x, n,m) and ΔXn/m . As τ ≤ R
and m → ∞, we have

p(x, n,m) (81)

= c
Xτ + 1√

mx − 1

c
A(m)
1 (0)+A(m)

2 (0)
m +kτ − 1

= c
Xτ + 1√

mx − 1

c
a+b+kτ+ θ1+θ2√

m
+O( 1

m ) − 1
(82)

= g(τ ) + log c

ca+b+kτ − 1

(
cXτ x − (cXτ − 1)ca+b+kτ

ca+b+kτ − 1
(θ1 + θ2)

)
1√
m

+ O
( 1

m

)
.

The third equality follows from a Taylor’s development. Also

ΔXn/m = X ′
n/m

1

m
+ O(m−2) = kg(τ )

1

m
+ O(m−2). (83)

For X ′ we used the differential equation, (22), that X satisfies instead of the explicit
expression for it. Substituting these expressions in (77), (78), we get the claim. 
�

Relation (23) implies that cXτ = (ca+b − 1)/{cb − 1 + c−kτ (1 − c−a)}, and this
gives that the parenthesis following 1

m in equation (a) of the claim above equals

(ca+b − 1)x − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kτ (1 − c−a)
(84)
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and also that

g(τ ){1 − g(τ )} = (ca − 1)(cb − 1)ca+kτ

(ca+b+kτ − ca+kτ + ca − 1)2
. (85)

Thus, the claim implies that conditions (i), (ii) of Corollary 1 are satisfied by the
functions

μ(x, t) = k log c

ca+b+kt − 1

{
(ca+b − 1)x − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kt (1 − c−a)

}
, (86)

a(x, t) = k2(ca − 1)(cb − 1)
ca+kt

(ca+b+kt − ca+kt + ca − 1)2
. (87)

As in the proof of Theorem 4, condition (i i i) of the corollary holds trivially, while
limm→∞ Z (m)

0 = θ1 (condition (iv)). Finally, for each x ∈ R and for the choice of
μ, a above, Eq. (67) has a strong solution and uniqueness in distribution holds. Thus,
the process (Z (m)

[mt])t≥0 converges, as m → ∞, to the unique solution of the stochastic
differential equation (25).

The same is true for the process (C (m)
t )t≥0 because supt≥0 |Z (m)

[mt] −C (m)
t | ≤ k/

√
m

for all m ∈ N
+ (we use the fact that 0 < X ′

t ≤ k for all t ≥ 0). To solve (25), we
remark that a solution of an equation of the form

dYt = (α(t)Yt + β(t)) dt + γ (t) dWt (88)

with α, β, γ : [0,∞) → R continuous functions is given by

Yt = e
∫ t
0 α(s) ds

(
Y0 +

∫ t

0
β(s)e− ∫ s

0 α(r) dr ds +
∫ t

0
γ (s)e− ∫ s

0 α(r) dr dWs

)
. (89)

[To discover the formula, we apply Itó’s rule to Yt exp{−
∫ t
0 α(s) ds} and use (88).]

Applying this formula for the values of α, β, γ dictated by (25) we arrive at (26).

5 Proofs for the q-Pólya urn withmany colors

Proof of Theorem 6 First, the equality of the expressions in (28), (29) follows from the
definition of the q-multinomial coefficient.

We will prove (28) by induction on l. When l = 2, (28) holds because of (10). In
that relation, we have x1 = x, x2 = n− x . Assuming that (28) holds for l ≥ 2 we will
prove the case l + 1. The probability

P((H2(n) = x2, . . . , Hl+1(n) = xl+1)
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equals

P (H3(n) = x3, . . . , Hl+1(n) = xl+1)P(H2(n) = x2 | H3(n) (90)

= x3, . . . , Hl+1(n) = xl+1)

= q
∑l+1

i=3 xi
∑i−1

j=1(w j+kx j)

[− w1+w2
k

x1+x2

]
q−k

∏l+1
i=3

[− wi
k

xi

]
q−k

[− w1+...wl+1
k
n

]
q−k

× qx2(w1+kx1)

[− w1
k

x1

]
q−k

[− w2
k

x2

]
q−k

[− w1+w2
k

x1+x2

]
q−k

= q
∑l+1

i=2 xi
∑i−1

j=1(w j+kx j)

∏l+1
i=1

[− wi
k

xi

]
q−k

[− w1+...wl+1
k
n

]
q−k

.

This finishes the induction provided that we can justify these two equalities. The
second is obvious, so we turn to the first. The first probability in (90) is specified by
the inductive hypothesis. That is, given the description of the experiment, in computing
this probability it is as if we merge colors 1 and 2 into one color which is placed in the
line before the remaining l − 1 colors. This color has initially a1 + a2 balls and we
require that in the first n drawings we choose it x1 + x2 times. The second probability
in (90) is specified by the l = 2 case of (28), which we know. More specifically, since
the number of drawings from colors 3, 4, . . . , l + 1 is given, it is as if we have an
urn with just two colors 1, 2 that have initially w1 and w2 balls, respectively. We do
x1 + x2 drawings with the usual rules for a q-Pólya urn, placing in a line all balls of
color 1 before all balls of color 2, and we want to pick x1 times color 1 and x2 times
color 2. 
�

Proof of Theorem 7 The components of (H2(n), H3(n), . . . , Hl(n)) are increasing in
n, and from Theorem 1 we have that each of them has finite limit (we treat all colors
2, . . . , l as one color). Thus the convergence of the vector with probability one to a
random vector with values in N

l−1 follows. In particular, we also have convergence
in distribution, and it remains to compute the distribution of the limit. Let x1 :=
n − (x2 + · · · + xl). Then the probability in (28) equals

P (H2(n) = x2, . . . , Hl(n) = xl) = q−∑
1≤i< j≤l w j xi

∏l
i=1

[wi
k +xi−1

xi

]
q−k

[∑l
i=1 wi
k +n−1

n

]
q−k

(91)

= q
∑

1≤ j<i≤l xiw j

∏l
i=1

[wi
k +xi−1

xi

]
qk

[n+
∑l

i=1 wi
k −1
n

]
qk

(92)
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= q
∑l

i=2

(
xi

∑i−1
j=1 w j

) {
l∏

i=2

[wi
k + xi − 1

xi

]

qk

} [x1+ w1
k −1
x1

]
qk

[n+
∑l

i=1 wi
k −1
n

]
qk

. (93)

In the first equality, we used (34) while in the second we used (35). When we take
n → ∞ in (93), the only terms involving n are those of the last fraction, and (46)
determines their limit. Thus, the limit of (93) is found to be the function f (x2, . . . , xl)
in the statement of the theorem. 
�
Proof of Theorem 8 For each m ∈ N

+, we consider the discrete time-homogeneous
Markov chain

Z (m)
n :=

(
n

m
,
A(m)
2 (n)

m
,
A(m)
3 (n)

m
, . . . ,

A(m)
l (n)

m

)
, n ∈ N.

From any given state (t, x) := (t, x2, x3, . . . , xl) that Z (m) finds itself it moves to one
of

(
t + 1

m
, x2, . . . , xi + 1

m
, . . . , xl

)
, i = 2, . . . , l,

(
t + 1

m
, x2, . . . , xi , . . . , xl

)

with corresponding probabilities

pi (x2, . . . , xl , t,m) = qmsi−1(t)
[mxi ]q

[msl(t)]q , i = 2, . . . , l, (94)

p1(x2, . . . , xl , t,m) = [mx1(t)]q
[msl(t)]q , (95)

where

si (t) = x1(t) +
∑

1< j≤i

x j (96)

for i ∈ {1, 2, . . . , l} and

x1(t) : = m−1
l∑

j=1

A(m)
j (0) + kt −

∑

2≤ j≤l

xi . (97)

These follow from (27) once we count the number of balls of each color present at
the state (t, x). To do this, we note that Z (m)

n = (t, x) implies that n = mt drawings
have taken place so far, the total number of balls is A(m)

0,1 + · · · + A(m)
0,l + kmt , and the

number of balls of color i , for 2 ≤ i ≤ l, is mxi . Thus, the number of balls of color 1
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is A(m)
1 (0) + · · · + A(m)

l (0) + kmt − m
∑

2≤ j≤l xi = mx1(t). The required relations
follow.

Let x1 := limm→∞ x1(t) = σl + kt − ∑
2≤ j≤l xi and si := limm→∞ si (t) =∑

1≤ j≤i xi for all i ∈ {1, 2, . . . , l}. Then, since q = c1/m , for fixed (t, x2, . . . , xl) ∈
[0,∞)l with (x2, . . . , xl) �= 0, we have

lim
m→∞ pi (x2, . . . , xl , t,m) = csi−1

[xi ]c
[sl ]c (98)

for all i = 2, . . . , l. We also note the following.

Z (m)
n+1,1 − Z (m)

n,1 = 1

m
, (99)

E
[
Z (m)
n+1,i − Z (m)

n,i |Z (m)
n = (t, x2, . . . , xl)

]
= k

m
pi (x2, . . . , xl , t,m), (100)

E
[
(Z (m)

n+1,i − Z (m)
n,i )2|Z (m)

n = (t, x2, . . . , xl)
]

= k2

m2 pi (x2, . . . , xl , t,m), (101)

E
[
(Z (m)

n+1,i − Z (m)
n,i )(Z (m)

n+1, j − Z (m)
n, j )|Z (m)

n = (t, x2, . . . , xl)
]

= 0 (102)

for i, j = 2, 3, . . . , l with i �= j .
Therefore, with similar arguments as in the proof of Theorem 4, as m →

+∞, (Z (m)
[mt])t≥0 converges in distribution to Y , the solution of the ordinary differ-

ential equation

dYt = b(Yt ) dt,

Y0 = (0, a2, . . . , al),
(103)

where b(t, x2, . . . , xl) = (
1, b(2)(t, x), b(3)(t, x), . . . , b(l)(t, x)

)
with

b(i)(t, x) = kcsi−1
[xi ]c
[sl ]c

for i = 2, 3, . . . , l. Note that sl = σl + kt does not depend on x .
Since A(m)

1 ([mt])+ A(m)
2 ([mt])+· · ·+ A(m)

l ([mt]) = kmt + A(m)
1 (0)+ A(m)

2 (0)+
· · · + A(m)

l (0), we get that the process (A(m)
[mt],1/m, A(m)

[mt],2/m + · · · + A(m)
[mt],l/m)t≥0

converges in distribution to a process (Xt,1, Xt,2, . . . , Xt,l)t≥0 so that Xt,1 + · · · +
Xt,l = a1 + a2 + · · · + al + kt , while the Xt,i , i = 2, . . . , l, satisfy the system

X ′
t,i = kcσl+kt−∑l

j=i Xt,i
1 − cXt,i

1 − cσl+kt
for all t > 0, (104)

X0,i = ai , (105)
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with i = 2, 3, . . . , l. Letting Zr ,i = c
X log r

k log c ,i for all r ∈ (0, 1] and i ∈ {1, 2, . . . , l},
we have for the Zr ,i , i ∈ {2, 3, . . . , l} the system

Z ′
r ,i

1 − Zr ,i
= σl

1 − σlr

1∏
i< j≤l Zr , j

, (106)

Z1,i = cai . (107)

In the case i = l, the empty product equals 1. It is now easy to prove by induction
(starting from i = l and going down to i = 2) that

Zr ,i = cσl−σi−1(1 − cσl r) − cσl (1 − r)

cσl−σi (1 − cσl r) − cσl (1 − r)
(108)

for all r ∈ (0, 1]. Since Zr ,1Zr ,2 · · · Zr ,l = cσl r , we can check that (108) holds for
i = 1 too. The fraction in (108) equals

cai
(1 − cσl r) − cσi−1(1 − r)

(1 − cσl r) − cσi (1 − r)
. (109)

Recalling that Xt,i = (log c)−1 log Zckt , we get (31) for all i ∈ {1, 2, . . . , l} . 
�
Proof of Theorem 9 This is proved in the same way as Theorem 8. We keep the same
notation as there. The only difference now is that limm→∞ pi (t, x2, ..., xl ,m) = xi/sl .
As a consequence, the system of ordinary differential equations for the limit process
Yt := (t, Xt,2, . . . , Xt,l) is (103) but with

b(i)(t, x) = kxi
sl

.

Recall that sl = σl + kt . Thus, for i = 2, 3, . . . , l, the process Xt,i satisfies X ′
t,i =

kXt,i/(σl + kt), X0,i = ai , which give immediately the last l − 1 coordinates of (32).
The formula for the first coordinate follows from Xt,1 + Xt,2 + · · · + Xt,l = kt + σl .
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Abstract
For the plain Pólya urn with two colors, black and white, we prove a functional central
limit theorem for the number of white balls, assuming that the initial number of black
balls is large. Depending on the initial number of white balls, the limit is either a pure
birth process or a diffusion.

Keywords Pólya urn · Functional limit theorems · Birth processes · Diffusion
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1 Introduction and Results

The model. The Pólya urn is the model where in an urn that has initially A0 white
and B0 black balls we draw, successively, and uniformly at random, a ball from it
and then we return the ball back together with k balls of the same color as the one
drawn. The number k ∈ N

+ is fixed. Call An and Bn the number of white and black
balls, respectively, after n drawings. The most notable result regarding the asymptotic
behavior of the urn is that the proportion of white balls in the urn after n drawings,
An/(An + Bn), converges almost surely as n → ∞ to a random variable with distri-
bution Beta(A0/k, B0/k).

Our aim in thiswork is to examinewhether the entire path (An)n∈N, after appropriate
natural transformations, converges in distribution to a nontrivial stochastic process.
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Standard references for the theory and the applications of the Pólya urn and related
models are [9] and [10].

The setting. We consider an urn whose initial composition depends on m ∈ N
+. It

is A(m)
0 and B(m)

0 white and black balls, respectively. After n drawings, the composition

is A(m)
n , B(m)

n .
To see a new process arising out of the path (A(m)

n )n∈N, we start with an initial
number of balls that tends to infinity as m → ∞. More specifically, we assume then
that B(m)

0 grows linearly with m. Regarding A(m)
0 , we study three regimes:

a) A(m)
0 stays fixed with m.

b) A(m)
0 grows to infinity but sublinearly with m.

c) A(m)
0 grows linearly with m.

The regime where A(m)
0 grows superlinearly withm follows from regime b) by chang-

ing the roles of the two colors. We remark on this after Theorem 2.
In the regimes a) and b), the scarcity of white balls has as a result that the time

between two consecutive drawings of a white ball is of order m/A(m)
0 (the probability

of picking a white ball in the first few drawings is approximately A(m)
0 /m, which is

small). We expect then that speeding up time by this factor we will see a birth process.
And indeed this is the case as our first two theorems show.

In this work, all processes appearing with index set [0,∞) and values in some
Euclidean space Rd are elements of DRd [0,∞), the space of functions f : [0,∞) →
R
d that are right continuous and have limits from the left at each point of [0,∞). This

space is endowed with the Skorokhod topology (defined in section 5 of Chapter 3 of
[5]), and convergence in distribution of processes with values on that space is defined
through that topology.

We remind the reader that the negative binomial distribution with parameters ν ∈
(0,∞) and p ∈ (0, 1) is the distribution with support in N and probability mass
function

f (x) =
(
x + ν − 1

x

)
pν(1 − p)x (1)

for all x ∈ N. When ν ∈ N
+, this is the distribution of the number of failures until we

obtain the ν-th success in a sequence of independent trials, each having probability of
success p. For a random variable X with this distribution, we write X ∼ N B(ν, p).

Since in each drawing we add k balls in the urn, the quantity k−1{A(m)
n − A(m)

0 },
appearing in our first two theorems, counts the number of times in the first n drawings
that we selected a white ball.

Theorem 1 Fix a0 ∈ N
+ and b > 0. If A(m)

0 = a0 for all m ∈ N
+ and

limm→∞ B(m)
0 /m = b, then the process (k−1{A(m)

[mt] − A(m)
0 })t≥0 converges in dis-

tribution, as m → ∞, to an inhomogeneous in time pure birth process Z = {Z(t)}t≥0
with Z(0) = 0 and such that for all 0 ≤ t1 < t2, j ∈ N,

Z(t2) − Z(t1)|Z(t1) = j has distribution N B
(a0
k

+ j,
t1 + (b/k)

t2 + (b/k)

)
.
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In particular, Z has rates λt, j = (k j + a0)/(kt + b) for all (t, j) ∈ [0,∞) × N.

Theorem 2 If A(m)
0 =: gm with gm → ∞, gm = o(m) and limm→∞ B(m)

0 /m = b with

b > 0 constant, then the process (k−1{A(m)
[tm/gm ] − A(m)

0 })t≥0, as m → ∞, converges
in distribution to the Poisson process on [0,∞) with rate 1/b.

We return to the discussion at the beginning of the subsection. The regime where
limm→∞ B(m)

0 (0)/m = b > 0 and A(m)
0 /m → ∞ is covered by the previous theorem.

We need to change the roles of the colors and remark that the role of m as a scaling
parameter is played now by A(m)

0 . The result that we obtain is that the process

1

k

(
B(m)

[t A(m)
0 /(bm)] − B(m)

0

)
t≥0

converges in distribution, as m → ∞, to the Poisson process on [0,∞) with rate 1.
Next, we look at regime c), i.e., in the case that at time 0 both black and white balls

are of order m. In this case, the normalized process of the number of white balls has
a non-random limit, which we determine, and then we study the fluctuations of the
process around this limit.

Theorem 3 Assume that A(m)
0 , B(m)

0 are such that

lim
m→∞

A(m)
0

m
= a, lim

m→∞
B(m)
0

m
= b,

where a, b ∈ [0,∞) are not both zero. Then the process (A(m)
[mt]/m)t≥0, as m → ∞,

converges in distribution to the deterministic process Xt = a
a+b (a + b + kt), t ≥ 0.

The limit X is the same as in an urn in which we add at each step k white or black
balls with corresponding probabilities a/(a+b), b/(a+b), that is, irrespective of the
composition of the urn at that time.

To determine the fluctuations of the process (A(m)
[mt]/m)t≥0 around itsm → ∞ limit,

X , we let

C (m)
t = √

m

(
A(m)

[mt]
m

− Xt

)
(2)

for all m ∈ N
+ and t ≥ 0.

Theorem 4 Let a, b ∈ [0,∞), not both zero, θ1, θ2 ∈ R, and assume that A(m)
0 :=

[am+θ1
√
m], B(m)

0 = [bm+θ2
√
m] for all large m ∈ N. Then the process (C (m)

t )t≥0
converges in distribution, as m → ∞, to the unique strong solution of the stochastic
differential equation

Y0 = θ1, (3)
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dYt = k

a + b + kt

{
Yt − a

a + b
(θ1 + θ2)

}
dt + k

√
ab

a + b
dWt , (4)

which is

Yt = θ1 + bθ1 − aθ2

(a + b)2
kt + k

√
ab

a + b
(a + b + kt)

∫ t

0

1

a + b + ks
dWs . (5)

W is a standard Brownian motion

In the previous theorem, it is possible to allow other kinds of deviations away from
linearity (and not only of order

√
m) for the values of A(m)

0 , B(m)
0 . And then we get a

diffusion limit if instead of (2) we look at the process

D(m)
t = √

m

(
A(m)

[mt]
m

− A(m)
0

m
− kt

A(m)
0

A(m)
0 + B(m)

0

)
(6)

for all m ∈ N
+ and t ≥ 0. More specifically, we have the following.

Theorem 5 Assume that limm→∞
A(m)
0
m = a,

B(m)
0
m = b where a, b ∈ [0,∞) are not

both zero. Then the process (D(m)
t )t≥0 converges in distribution, as m → ∞, to the

unique strong solution of the stochastic differential equation

V0 = 0, (7)

dVt = kVt
a + b + kt

dt + k

√
ab

a + b
dWt , (8)

which is

Vt = k

√
ab

a + b
(a + b + kt)

∫ t

0

1

a + b + ks
dWs . (9)

W is a standard Brownian motion

Remark Functional central limit theorems for Pólya type urns have been proven with
increasing generality in the works [2,6,8]. The major difference with our results is that
in theirs the initial number of balls, A(m)

0 , B(m)
0 , is fixed (see however the last point in

the list, concerning the recent work [3]). More specifically:

(1) Gouet ([6]) studies urns with two colors (black and white) in the setting of
Bagchi and Pal ([1]). According to that, when a white ball is drawn, we return it in the
urn together with a white and b black balls, while if a black ball is drawn, we return it
together with c white and d black. The numbers a, b, c, d are fixed integers (possibly
negative), the number of balls added to the urn is fixed (that is a + b = c + d), and
balls are drawn uniformly form the urn. The plain Pólya urn is not studied in that
work because, according to the author, it has been studied by Heyde in [7]. However,
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for the Pólya urn, [7] discusses the central limit theorem and the law of the iterated
logarithm. In any case, following the techniques of Heyde and Gouet one can prove
the following. Assume for simplicity that k = 1 and let L =: limn→∞ An

n . The limit
exists with probability one because of the martingale convergence theorem. Then

{√
n

(
t
A[n/t]
n

− L

)}
t≥0

d→ {WL ′(1−L ′)t }t≥0

as n → ∞.W is a standard Brownian motion and L ′ is a random variable independent
of W and having the same distribution as L . On the other hand, de-Finetti’s theorem
gives easily the more or less equivalent statement that, as n → ∞,

{√
n

(
A[nt]
nt

− L

)}
t≥0

d→ {WL ′(1−L ′)/t }t≥0

with W , L ′ as before.
(2) Bai, Hu, and Zhang ([2]) work again in the setting of Bagchi and Pal, but

now the numbers a, b, c, d depend on the order of the drawing and are random. The
requirement that each time we add the same number of balls is relaxed.

(3) Janson ([8]) considers urns with many colors, labeled 1, 2, . . . , l, where after
each drawing, if we pick a ball of color i , we place in the urn balls of every color
according to a random vector (ξi,1, . . . , ξi,l) whose distribution depends on i (ξi, j is
the number of balls of color j that we add in the urn). Also, each ball is assigned a
certain nonrandom activity that depends only on its color, and then the probability to
pick a certain color at a drawing equals the ratio of the total of the activities of all balls
of that color to the total of the activities of all balls present in the urn at that time. A
restriction in that work is that there is a color i0 so that starting the urn with just one
ball and this ball has this color, there is positive probability to see in the future every
other color. This excludes the classical Pólya urn that we study.

(4) In [3], K. Borovkov studies a Pólya urn with d + 1 colors, 1, 2, . . . , d + 1, and
proves convergence after appropriate scaling for the path {M([nt])}t∈[0,1], as n → ∞,
where

M( j) := (ξ1( j), ξ1( j) + ξ2( j), . . . ,
d∑

i=1

ξi ( j)) ∈ N
d

and ξi ( j) is the number of balls of color i present in the urn at time j . The initial
total number of balls in the urn is N and the author considers limits as N , n → ∞
with n/N → c under the regimes c = 0, c ∈ (0,∞), c = ∞. It assumes that at each
drawing we add one ball, i.e., k = 1 in our notation.

Its relation to the present work is the following. We study only the case d = 1, and
then M( j) = ξ1( j) = A(m)

j .
a) Theorems 1 and 2 are not covered by [3] because in Corollary 1 of [3] the changes

A(m)
[mt] − A(m)

0 , A(m)
[tm/gm ] − A(m)

0 are divided by
√
m and

√
m/gm , respectively (and then

m is sent to infinity), while in Theorem 1 of [3], these changes are related to certain
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processes but with an error term of the order of log2 m. That is, in the scenarios of
Theorems 1 and 2, the results of [3] are too rough to capture the birth process that we
identify.

b) Theorems 4, 5 follow fromCorollary 1(ii) in [3]. For example, under the assump-
tions of Theorem 4, the Corollary gives that

C (m)
t − θ1 − bθ1 − aθ2

(a + b)2
t = Ht + oP(1)

for all t ∈ [0, 1], where the supremum of the error term, oP(1), over t ∈ [0, 1] goes
to zero in probability as m → ∞, while the process H is Gaussian with continuous
paths, mean function zero, and covariance function

Cov(Hs, Ht ) = ab

(a + b)3
s(a + b + t)

for all 0 ≤ s ≤ t . The term involving the stochastic integral in (5) also defines a
Gaussian process with continuous paths and the same mean and covariance function
as H . The justification for Theorem 5 is similar.

A preprint of the present work appeared in the arxiv onMay 30, 2019, a fewmonths
before the preprint of [3].

2 Jump Process Limits. Proof of Theorems 1, 2

In the case of Theorem 1, we let gm := 1 for all m ∈ N
+, and for both theorems we

let v := vm := m/gm (we suppress the dependence of v on m). Our interest is in the
sequence of the processes (Z (m))m∈N+ with

Z (m)(t) = 1

k
(A(m)

[vt] − A(m)
0 ) (10)

for all t ≥ 0.
To show convergence in distribution, according to Theorem 7.8 of Chapter 3 of [5],

it is enough to show that the sequence (Z (m))m≥1 is tight and its finite dimensional
distributions converge. The description of the limiting process is determined on the
way.

An easy argument shows that tightness follows from the convergence of the finite
dimensional distributions because each Z (m) has non-decreasing paths. It thus remains
to establish the convergence of the finite dimensional distributions.
Notation: (i) For sequences (an)n∈N, (bn)n∈Nwithvalues inR,wewill say that they are
asymptotically equivalent, and will write an ∼ bn as n → ∞, if limn→∞ an/bn = 1.
We use the same expressions for functions f , g defined in a neighborhood of ∞ and
satisfy limx→∞ f (x)/g(x) = 1.
(ii) For a ∈ C and k ∈ N

+, let

(a)k := a(a − 1) · · · (a − k + 1), (11)
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a(k) := a(a + 1) · · · (a + k − 1), (12)

the falling and rising factorial, respectively. Also let (a)0 := a(0) := 1.

2.1 Convergence of Finite Dimensional Distributions

By definition, Z (m)(0) = 0 = Z(0) for all m ∈ N
+.

Since, for each m ∈ N
+, the process Z (m) is Markov taking values in N and non-

decreasing in time, our objective will have been accomplished if we show that the
conditional probability

P(Z (m)(t2) = k2|Z (m)(t1) = k1) (13)

converges as m → ∞ for each 0 ≤ t1 < t2 and nonnegative integers k1 ≤ k2.
Define

n := [vt2] − [vt1], (14)

x := k2 − k1, (15)

σ := A(m)
0 + kk1

k
, (16)

τ := k[vt1] − kk1 + B(m)
0

k
. (17)

Then, the above probability equals

P(A(m)
[vt2] = kk2 + a0|A(m)

[vt1] = kk1 + a0)

=
(
n

x

)
kσ(kσ + k) · · · (kσ + (x − 1)k)kτ(kτ + k) · · · (kτ + (n − x − 1)k)

(kσ + kτ)(kσ + kτ + k) · · · (kσ + kτ + (n − 1)k)
(18)

= (n)x

x !
σ (x)τ (n−x)

(σ + τ)(n)
= (n)x

x ! σ (x) Γ (τ + n − x)

Γ (τ)

Γ (σ + τ)

Γ (σ + τ + n)
. (19)

To compute the limit as m → ∞ of (19), we will use Stirling’s approximation for the
Gamma function,

Γ (y) ∼
( y

e

)y
√
2π

y
(20)

as y → ∞, and its consequence

Γ (y + a) ∼ Γ (y)ya (21)

as y → ∞ for all a ∈ R.
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Proof (The computation for Theorem 1) Recall that v = m in this theorem. Using
(21) twice, with the role of a played by−x and σ , we see that the last quantity in (19),
for m → ∞, is asymptotically equivalent to

(m(t2 − t1))x

x ! σ (x)τ σ (τ + n)−x

(τ + n)σ
∼ (m(t2 − t1))x

x ! σ (x) {m(t1 + (b/k))}σ
{m(t2 + (b/k))}σ+x

= (t2 − t1)x

x ! σ (x) {t1 + (b/k)}σ
{t2 + (b/k)}σ+x

=
(

σ + x − 1

x

) (
t2 − t1

t2 + (b/k)

)x (
1 − t2 − t1

t2 + (b/k)

)σ

.

(22)

[For reader’s convenience, we remark that the asymptotics, asm → ∞, of the relevant
quantities are as follows: x, σ are constants while n ∼ (t2− t1)m, τ ∼ (t1+(b/k))m.]

Thus, asm → ∞, the distribution of {Z (m)(t2)−Z (m)(t1)}|Z (m)(t1) = k1 converges
to the negative binomial distribution with parameters σ,

t1+(b/k)
t2+(b/k) [recall (1)]. 
�

Proof (The computation for Theorem 2) Using (20), we see that the last quantity in
(19), for m → ∞, is asymptotically equivalent to

(m(t2 − t1))x

x !gxm
gxm
kx

ex
(τ + n − x)τ+n−x

τ τ

(σ + τ)σ+τ

(σ + τ + n)σ+τ+n

∼ mx (t2 − t1)x

x !kx ex (τ + n − x)−x
(

τ + n − x

σ + τ + n

)n

×
(

σ + τ

σ + τ + n

)σ (
(τ + n − x)(σ + τ)

τ (σ + τ + n)

)τ

∼ mx (t2 − t1)x

x !kx exτ−x e−(t2−t1)/be−(t2−t1)/be−x+(t2−t1)/b

∼ 1

x !
(
t2 − t1

b

)x

e−(t2−t1)/b.

[Here, the asymptotics, as m → ∞, of the relevant quantities are as follows: x is
constant while n ∼ (t2 − t1)m/gm, τ ∼ (b/k)m, σ ∼ gm/k.]

Thus, as m → ∞, the distribution of

{Z (m)(t2) − Z (m)(t1)}|Z (m)(t1) = k1

converges to the Poisson distribution with parameter (t2 − t1)/b. 
�

2.2 Conclusion

It is clear from the form of the finite dimensional distributions that in both Theorems
1, 2 the limiting process Z is a pure birth process that does not explode in finite time.
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Its rate at the point (t, j) ∈ [0,∞) × N is

λt, j = lim
h→0+

1

h
P(Z(t + h) = j + 1|Z(t) = j)

and is found as stated in the statement of each theorem.

3 Deterministic and Diffusion Limits. Proof of Theorems 3, 4, 5.

Theorems 3, 4, 5 are proved with the use of Theorem 7.1 in Chapter 8 of [4], which
is concerned with convergence of time-homogeneous Markov chains to diffusions.
The chains whose convergence is of interest to us are time inhomogeneous, but we
reduce their study to the time-homogenous setting by considering for each such chain
{Zn}n∈N the time homogeneous chain {(Zn, n)}n∈N. The following consequence of
the aforementioned theorem suffices for our purposes.

Corollary 1 Assume that for each m ∈ N
+, (Z (m)

n )n∈N is a Markov chain in R. For
each m ∈ N

+ and n ∈ N, let ΔZ (m)
n := Z (m)

n+1 − Z (m)
n and

μ(m)(x, n) := mE(ΔZ (m)
n 1|ΔZ (m)

n |≤1
|Z (m)

n = x), (23)

a(m)(x, n) := mE{(ΔZ (m)
n )21|ΔZ (m)

n |≤1
|Z (m)

n = x} (24)

for all x ∈ R with P(Z (m)
n = x) > 0. Also, for R > 0 and for the same m, n as above,

let A(m, n, R) := {(x, n) : |x | ≤ R, n/m ≤ R,P(Z (m)
n = x) > 0}.

Assume that there are continuous functionsμ : R×[0,∞) → R, a : R×[0,∞) →
[0,∞), and x0 ∈ R so that:
For every R, ε > 0, it holds

(i) sup(x,n)∈A(m,n,R) |μ(m)(x, n) − μ(x, n/m)| → 0 as m → ∞,
(ii) sup(x,n)∈A(m,n,R) |a(m)(x, n) − a(x, n/m)| → 0 as m → ∞,

(iii) sup(x,n)∈A(m,n,R) mP(|ΔZ (m)
n | ≥ ε|Z (m)

n = x) → 0 as m → ∞,

and also

(iv) Z (m)
0 → x0 as m → ∞ with probability 1,

(v) for each x ∈ R, the stochastic differential equation

dZt = μ(Zt , t) dt + √
a(Zt , t) dBt ,

Z0 = x,
(25)

where B is a one-dimensional Brownian motion, has a weak solution which is
unique in distribution.

Then, the process (Z (m)
[mt])t≥0 converges in distribution to the weak solution of (25)

with x = x0.
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Proof For eachm ∈ N
+, we consider the process Y (m)

n := (Z (m)
n , n/m), n ∈ N, which

is a time-homogeneous Markov chain with values inR2, and we apply Theorem 7.1 in
Chapter 8 of [4] Conditions (i), (i i), (i i i) of that theorem follow from our conditions
(i i), (i), (i i i) respectively, while condition (A) there translates to the requirement that
the martingale problem for the functions μ and

√
a is well posed, and this follows

from condition (v). 
�
The tool we will use in checking that condition (v) of the corollary is satisfied

is the well-known existence and uniqueness theorem for strong solutions of SDEs
which requires that for all T > 0, the coefficients μ(x, t),

√
a(x, t) are Lipschitz in x

uniformly for t ∈ [0, T ] and supt∈[0,T ]{|μ(0, t)| + a(0, t)} < ∞ (e.g., Theorem 2.9
of Chapter 5 or [4]). The same conditions imply uniqueness in distribution.

3.1 Proof of Theorem 3

We will apply Corollary 1. For each m ∈ N
+, consider the Markov chain Z (m)

n =
A(m)
n
m , n ∈ N. From any given state x of Z (m)

n , the chain moves to either of x +km−1, x
with corresponding probabilities p(x, n,m), 1 − p(x, n,m), where

p(x, n,m) := mx

A(m)
0 + B(m)

0 + kn
. (26)

In particular, for any ε > 0, is holds |ΔZ (m)
n | < 1 ∧ ε for m large enough. Thus,

condition (i i i) of the corollary is satisfied trivially. Also, for largem, with the notation
of the corollary, we have

μ(m)(x, n) = kp(x, n,m), (27)

a(m)(x, n) = k

m
p(x, n,m). (28)

And it is easy to see that conditions (i), (i i) are satisfied by the functions a, μ with
a(x, t) = 0 and μ(x, t) = kp(x, t) where

p(x, t) := x

a + b + kt
. (29)

Now for each x ∈ R, the equation

dZt = kp(Zt , t) dt,

Z0 = x,
(30)

has a unique solution. Thus, Corollary 1 applies. In fact, (30) is a separable ordinary
differential equation and its unique solution is the one given in the statement of the
theorem.
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3.2 Proof of Theorem 4

Call λ := a/(a + b). For each m ∈ N
+, consider the Markov chain

Z (m)
n = √

m
( A(m)

n

m
− X n

m

)
, n ∈ N.

From any given state x of Z (m)
n , the chain moves to either of x − km−1/2λ, x +

km−1/2(1 − λ) with corresponding probabilities

B(m)
n

A(m)
n + B(m)

n

,
A(m)
n

A(m)
n + B(m)

n

,

where

A(m)
n = ma + λkn + x

√
m, (31)

B(m)
n = A(m)

0 + B(m)
0 + kn − A(m)

n . (32)

Note that

A(m)
0 + B(m)

0 = (a + b)m + (θ1 + θ2)
√
m + δm, (33)

with δm ∈ [0, 2), and consequently

A(m)
n = λ(A(m)

n + B(m)
n ) + √

m(x − λ(θ1 + θ2)) − λδm . (34)

Again, condition (i i i) of Corollary 1 holds trivially, while limm→∞ Z (m)
0 = θ1 (con-

dition (iv)). Then, for large m we have

μ(m)(x, n) = k
√
m

(1 − λ)A(m)
n − λB(m)

n

A(m)
n + B(m)

n

= k
x − λ(θ1 + θ2) − λ δm√

m

A(m)
0 +B(m)

0
m + k n

m

, (35)

a(m)(x, n) = k2
(

λ2
B(m)
n

A(m)
n + B(m)

n

+ (1 − λ)2
A(m)
n

A(m)
n + B(m)

n

)
(36)

= k2λ(1 − λ) + k2(1 − 2λ)

√
m(x − λ(θ1 + θ2)) − λδm

A(m)
n + B(m)

n

. (37)

It follows that conditions (i), (i i) are satisfied by the functions μ, a with

μ(x, t) = k{x − (θ1 + θ2)λ}
a + b + kt

, (38)

a(x, t) = k2ab

(a + b)2
. (39)
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For each x ∈ R, the stochastic differential equation

dYt = k{Yt − (θ1 + θ2)λ}
a + b + kt

dt + k

√
ab

a + b
dWt , (40)

Y0 = x, (41)

where W is a standard Brownian motion, has a unique strong solution as the drift and
diffusion coefficients are Lipschitz in Yt and grow at most linearly in Yt at infinity
(both conditions uniformly in t). Thus, Corollary 1 applies and gives that the process
(Z (m)

[mt])t≥0 converges in distribution, asm → ∞, to the solution of (40), (41) with x =
θ1. The same is true for (C (m)

t )t≥0 because supt≥0 |C (m)
t − Z (m)

[mt]| = supt≥0
√
mλk(t−

[mt]/m) = λk/
√
m → 0 as m → ∞.

To solve the stochastic differential Eq. (40), (41),we setUt := {Yt−(θ1+θ2)λ}/(a+
b + kt). Itô’s lemma gives that

dUt = k

√
ab

(a + b)

1

a + b + kt
dWt ,

and since U0 = (bθ1 − aθ2)/(a + b)2, we get

Ut = bθ1 − aθ2

(a + b)2
+ k

√
ab

a + b

∫ t

0

1

a + b + ks
dWs .

This gives (5).

3.3 Proof of Theorem 5

The proof is analogous to that of Theorem 4. Call λm := A(m)
0 /(A(m)

0 + B(m)
0 ). For

each m ∈ N
+, consider the Markov chain

Z (m)
n = √

m
( A(m)

n

m
− A(m)

0

m
− λmk

n

m

)
, n ∈ N.

From any given state x of Z (m)
n , the chain moves to either of x − km−1/2λm, x +

km−1/2(1 − λm) with corresponding probabilities

B(m)
n

A(m)
n + B(m)

n

,
A(m)
n

A(m)
n + B(m)

n

,

where

A(m)
n = A(m)

0 + λmkn + x
√
m, (42)

B(m)
n = A(m)

0 + B(m)
0 + kn − A(m)

n . (43)
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Again, condition (i i i) of Corollary 1 holds trivially, while limm→∞ Z (m)
0 = 0 (condi-

tion (iv)). Then, for large m we have

μ(m)(x, n) = k
√
m

(1 − λm)A(m)
n − λmB

(m)
n

A(m)
n + B(m)

n

= kx

A(m)
0 +B(m)

0
m + k n

m

, (44)

a(m)(x, n) = k2
(

λ2m
B(m)
n

A(m)
n + B(m)

n

+ (1 − λm)2
A(m)
n

A(m)
n + B(m)

n

)
(45)

= k2λm(1 − λm) + k2(1 − 2λm)
x
√
m

A(m)
n + B(m)

n

. (46)

Note now that limm→∞ λm = a/(a + b) and limm→∞(A(m)
n + B(m)

n )/m = a + b. It
follows that conditions (i), (i i) are satisfied by the functions μ, a with

μ(x, t) = kx

a + b + kt
, (47)

a(x, t) = k2ab

(a + b)2
. (48)

For each x ∈ R, the stochastic differential equation

dVt = kYt
a + b + kt

dt + k

√
ab

a + b
dWt , (49)

V0 = x, (50)

where W is a standard Brownian motion, has a unique strong solution as the drift and
diffusion coefficients are Lipschitz in Vt and grow at most linearly in Vt at infinity
(both conditions uniformly in t). Thus, Corollary 1 applies and gives that the process
(Z (m)

[mt])t≥0 converges in distribution, as m → ∞, to the solution of (49), (50) with

x = 0. The same is true for (D(m)
t )t≥0 because supt≥0 |D(m)

t − Z (m)
[mt]| ≤ k/

√
m → 0

as m → ∞.
Easily one finds that the solution of the stochastic differential Eq. (49), (50) with

x = 0 is (9)
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. Introduction 

The World Health Organization (WHO) reported on December

1, 2019 cases of pneumonia of undetected etiology in the city of

uhan, Hubei Province in China. A novel coronavirus (CoViD-19)

as identified as the source of the disease by the Chinese authori-

ies on January 7, 2020. Eventually, the International Committee on

axonomy of Viruses on 11 February, 2020 named the Severe Acute

espiratory Syndrome Coronavirus as SARS-CoV-2 [1] . Concerns on

ublic health were dispersed on a global scale about potentially

nfected countries. The virus might have been generated by animal

opulations and transmitted via the Huanan wholesale market [2–

] albeit not proven, while clinical findings demonstrated that in-

ernational spread was caused mainly by commercial air travel [4–

] . The WHO declared SARS-CoV-2 a pandemic on March 11, 2020.

hroughout the globe, huge effort s were in progress to limit the

pread of the virus and find medications and vaccines. However,

he scientific community could not fully comprehend the dynam-

cs of the spread [8–10] . 

Several outbreaks of infectious diseases have occurred in the

ast with immense impact on public health. For instance, the Se-
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ere Acute Respiratory Syndrome (SARS) occurred in 2003, the

wine flu in 2009 and the Middle East Respiratory Syndrome Coro-

avirus (MERS) in Saudi Arabia in 2012, which still survives at

 sub-critical level causing some peaks [11–14] . Additionally, the

bola epidemic emerged between 2014 and 2016 and caused over

8,0 0 0 cases in West Africa [15] . Its temporal decline coincided

ith the outbreak of Zika virus in Brazil [16] . Consequently, the

utbreak of severe pathogens such as the aforementioned, require

lobal interdisciplinary efforts in order to decode key epidemiolog-

cal features and their transmission dynamics, and develop possible

ontrol policies. 

Insights from mathematical modelling can be extremely benefi-

ial. Indeed, dealing with infectious diseases from a mathematical

ngle could reveal inherent patterns and underlying structures that

overn outbreaks. Stakeholders utilize available data from current

nd previous outbreaks in order to forecast infection rates, iden-

ify how to restrict the spread of diseases, and eventually intro-

uce vaccination policies that will be most effective. Epidemiology

s essentially a biology discipline concerned with public health and

s such, it can be heavily influenced by mathematical theory. Most

henomena observed at population level are often very complex

nd difficult to decode just by observing the characteristics of iso-

ated individuals [17] . Statistical analyses of epidemiological data

elp to characterize, quantify and summarize the way diseases

pread in host populations. Interestingly, mathematical models ap-

ear as efficient ways to explore and test various epidemiologi-
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cal hypotheses, mostly due to the existence of ethical and practi-

cal limitations when deducting experiments on living populations.

Models provide conceptual results on e.g., the basic reproduction

number, threshold effects or herd immunity. One additional ele-

ment of epidemiological modeling is the link with data via sta-

tistical methods. Although simple epidemiological models are of-

ten used, viral and bacterial infections commonly require increased

complexity. There are many models in the literature on single epi-

demics, endemic diseases and spatiotemporal disease dynamics.

The aim is to develop robust public health policies in defining op-

timal vaccination strategies. 

Our study presents for the first time a new stochastic math-

ematical model for describing infectious dynamics and tracking

virus temporal transmissibility on 3-dimensional space (earth).

This model can be adjusted to describe all past outbreaks as well

as CoViD-19. As a matter of fact, it introduces a novel approach to

mathematical modelling of infectious dynamics of any disease, and

sets a starting point for conducting simulations, forecasting and

nowcasting investigations based on real-world stereographic and

spherical tracking on earth. 

In short, a single epidemic outbreak as opposed to disease en-

demicity occurs in a time span short enough not to have the de-

mographic changes perturbing the dynamics of contacts among in-

dividuals. The most popular mathematical model in this category is

the Susceptible-Infected-Recovered (SIR) epidemic model, in which

all individuals of a finite population interact in the same man-

ner. Individuals at time t are susceptible (S), infected (I) or re-

covered (R). The final size of the epidemic will strongly depend

upon the initial conditions of the number of susceptible and in-

fected individuals as well as the infection parameter. The final size

distribution of the simple SIR model in most cases is bimodal pre-

senting two local maxima. This bimodal feature is caused by two

likely scenarios; either the epidemic dies out quickly infecting few

individuals, or it becomes long-lasting and substantial. However,

stochasticity in the form of random walk transmission mechanisms

related to spreading processes has never been explored in epidemi-

ology widely [18–20] . For example, in computer science, some arti-

ficially created viruses propagate randomly by a plethora of online

communication channels. To the best of our knowledge, we are the

first to scrutinize extensively the role of random walks in epidemic

spreading and provide the proper mathematical arsenal to model it

robustly. Interestingly, random walk paths converge in distribution

to Brownian motions [21] . In this work, we assume that a biologi-

cal carrier of virus Y is at position X ( t ) at any given time t . We call

this the inaugural contamination focal point on earth. 

The path defined by its motion is considered infectious. X t , t ≥ 0

is supposed to follow a Brownian motion on a 2-dimensional

sphere S 2 of radius a , i.e the sphere in R of dimension 3. We

consider this a proxy for earth, spreading via spherical and stere-

ographic coordinates. Next, using the Laplace-Beltrami operator

we construct the Brownian motion infectious process on the 2-

dimensional sphere, using spherical and stereographic coordinates

as local coordinates. We evaluate explicitly certain quantities re-

lated to generated diffusion processes. In what follows, we com-

pute the transition and transmission density for the X t , t ≥ 0, and

we derive the stochastic differential equations that govern the in-

fectious disease dynamics for X t , t ≥ 0 in those local coordinates.

We continue with the calculation of expectations of outbreak exit

times in time and space of specific domains, possessing certain

symmetries. Moreover, the moment generating functions are pro-

duced. In mathematical terms, we derive the stochastic reflection

principle on S 2 for the infectious disease transmission process. Re-

flection points can be extremely useful to calculate the distribution

functions of certain temporal quantities related to the dynamics.

Additionally, we evaluate boundary local times of first hitting of

the outbreak for an epidemic or a hybrid endemic-epidemic model.
ence, biological carrier(s) of a virus (infectious individuals) are

racked at any given time on earth coordinates, and the path(s)

efined by each infectious dynamical motion. In the following two

hapters we present a thorough literature review and a state-of-

he-art analysis in order to pose clearly our novel approach opti-

ally among the various methodologies followed thus far. 

The rest of paper is organized as follows: Section 2 provides a

rief literature review, past and recent, of mathematical epidemi-

logy. Section 3 presents the state-of-the-art, and focal concepts

nd term definitions required to introduce our novel model. It also

tates which category the new model falls into, according to the

fficial taxonomy of the various methodologies already utilized so

ar in the relevant literature. Next, section 4 exposes in detail the

athematical formulation of the model. Lastly, Section 5 discusses

roposed policies and future paths of research, and concludes. 

. Literature review 

The beginning of mathematical modeling in epidemiology dates

ack to 1766, when Bernoulli developed a mathematical model to

nalyze the mortality of smallpox in England [22] . Bernoulli used

is model to show that inoculation against the virus would in-

rease the life expectancy at birth by about three years. A revi-

ion of the main findings and a presentation of the criticism by

’Alembert, appears recently in Dietz and Heesterbeek [23] . Lam-

ert in 1772 as well as Laplace in 1812 extended the Bernoulli

odel by incorporating age-dependent parameters [24,25] . How-

ver, further systematic research was absent until the beginning of

he twentieth century with the pioneering work of Ross in 1911,

hich is considered the inaugural study of modern mathemati-

al epidemiology [26] . Ross used a set of equations to approxi-

ate the discrete-time dynamics of malaria via a mosquito-based

athogen transmission [27] . Importantly, the past century has wit-

essed the rapid emergence and development of substantial theo-

ies in epidemics. In 1927, Kermack and McKendrick [28] derived

he celebrated threshold theorem, which is one of the key results

n epidemiology. It predicts – depending on the transmission po-

ential of the infection – the critical fraction of susceptibles in the

opulation that must be exceeded if an epidemic is to occur. Ker-

ack and McKendrick published three seminal papers, establish-

ng what is called the deterministic compartmental epidemic mod-

lling [29–31] , wherein they addressed the mass–action incident in

isease transmission cycles, assuming that the probability of infec-

ion of a susceptible is analogous to the number of its contacts

ith infected individuals. This deterministic representation was in

ine with the Law of Mass Action [32] introduced by Guldberg and

aage in 1864 and renders the basic most commonly used SIR

odel, which assumes homogeneous mixing of the contacts and

onservation of the total population and low rates of interaction.

acDonald extended Ross’s model to explain in depth the trans-

ission process of malaria. Utilizing modern computer power, the

athematical model for the dynamics and the control of mosquito-

ransmitted pathogens provided robust results in real-word appli-

ations. Overall, the family of models they introduced is known by

ow as Ross–MacDonald models [33] . Moreover, the classic work

f Bartlett [34] examined models and data to explore the factors

hat determine disease persistence in large populations. Arguably, a

andmark book on mathematical modelling of epidemiological sys-

ems was published by Bailey [35] and highlighted the importance

f public health decision making [36] . Given the diversity of infec-

ious diseases studied since the middle of the 1950s, an impressive

ariety of epidemiological models have been developed. In addi-

ion, we should highlight the 19th century works by Enko [37–39] ,

ho first published a probabilistic model for describing the epi-

emic of measles, yet in discrete time. This model is the precur-

or of the popular Reed-Frost chain binomial model introduced by
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R  
rost in 1928 in biostatistics’ lectures at Johns Hopkins University

40] . It assumes that the infection spreads from an infected to a

usceptible individual via a discrete time Markov chain, and set the

asis of contemporary stochastic epidemic modelling, on which we

ill also focus in our present work. 

Moving to the 21st century, we mention some interesting

orks; Xing et al., [41] introduced a mathematical model on H7N9

nfluenza among migrant and resident birds, domestic poultry and

umans in China. In this study they concluded that temperature

easonality might be a source of the disease, yet they suggested

or the first time that controlling markets could help controlling

utbreaks. Lee and Pietz [42] developed a mathematical model

or Zika virus using logistic growth in human populations. Sun

t al., [43] proposed a transmission model for cholera in China and

bserved that reducing the spread requires extensive immuniza-

ion coverage of the population. Nishiura et al. [44] developed a

ika mathematical model which exhibited the same dynamics as

engue fever, and Khan et al. [45] introduced a model whereby

 saturation function describes well the typhoid fever dynamics.

ui and Zhang [46] , developed a modified SIR model demonstrat-

ng nonlinearities in recovery rates. Their model exhibited a back-

ard bifurcation phenomenon, which in turn implied that a plain

eduction of the reproduction number less than one, was not ren-

ered sufficient to stop the disease spread. Li et al. [47] constructed

 multi-group brucellosis model and found out that the best way

o contain the disease is to avoid cross infection of animal pop-

lations. Moreover, Yu and Lin [48] identified complex dynamical

ehaviour in epidemiological models and particularly the existence

f multiple limit cycle bifurcations using a predictor-prey model.

hi et al. [49] proposed an HIV model with a saturated reverse

unction to describe the dynamics of infected cells. Additionally,

onyah et al. [50] developed a SIR model to study the dynamics of

uruli ulcer and suggested policy measures to control the disease.

astly, Zhang et al. [51] developed a model with a latent period of

he disease wherein the person is not infectious with saturated in-

idence rates and treatment functions, called SEIR epidemic model.

. State-of-the-art analysis and definitions 

The SIR model is the basic one used for modelling epidemics.

ermack and McKendrick created the model in 1927 [29] in which

hey considered a fixed population with only three compartments,

usceptible (S), infected (I) and recovered (R). There are a large

umber of modifications of the SIR model, including those that in-

lude births and deaths, the SIR without or with vital dynamics,

 model where upon recovery there is no immunity called SIS and

here immunity lasts for a short period of time, called SIRS model.

urthermore, a model where there is a latent period of the disease

nd where the person is not infectious is indentified as SEIS and

EIR respectively, or where infants can be born with immunity is

amed MSIR. Also, we mention the herd immunity model [52,53] . 

Overall, the transmission mechanism from infective populations

o susceptibles is not well-comprehended for many infectious dis-

ases. Interactions in a population are very complex, hence it is

xtremely difficult to capture the large scale dynamics of disease

pread without formal mathematical modeling. An epidemiological

odel uses microscopic effects - the role of an infectious individ-

al - to forecast the macroscopic behavior of disease spread via a

opulation. 

Deterministic models do not incorporate any form of uncer-

ainty and as such, they can be thought to account for the mean

rend of a process, alone. On the other hand, stochastic models de-

cribe the mean trend as well as the variance structure of the un-

erlying processes. Two basic types of stochasticity are commonly

sed: demographic and environmental. Within the context of de-

ographic stochasticity, all individuals are subject to the same po-
ential events with the exact same probabilities but differences in

he fates of population individuals. Disease propagation in large

opulations obeys to the weak law of large numbers, thus effects

f demographic stochasticity can be decreased significantly, and

any times a deterministic model becomes more suitable. How-

ver, random events cannot be neglected and a stochastic model

an be equally appropriate. Environmental stochasticity involves

ariations in the probability associated with an exogenous event.

odel parameters of stochastic models are characterized by proba-

ility distributions, whilst for fixed parameter values deterministic

odels will always produce the same results, except when chaotic

ehaviour emerges. 

In the classic SIR model it is assumed that the individuals leave

he infectious class at a constant rate and even if this assumption

eems most intuitive, it is not always the most realistic, regard-

ng the duration individuals stay infective [54–56] . Usually, ran-

om variables describe the time of recovery since infection. For

iscrete random variables (e.g., number of individuals) it is easy

o define a probability distribution, whilst for continuous variables

he time of recovery since infection is modelled. Often, in this last

ategory it is not possible to fix a probability as there is infinity

f such times. Hence, we first define a cumulative distribution and

hen express a probability density function from this cumulative

istribution. Infectious periods are exponentially distributed with

 mean infectious duration, however as frequently real data does

ot back up this assumption, we rather use constant duration. To

ccount for such more realistic distributions, the assumption that

he probability of recovery does not depend on the time since in-

ection, is often relaxed. Then, a common method of stages can be

sed to replace the infective compartment by a series of successive

nes, each with an exponential distribution of the same parameter,

eading to a total duration of the infectious period modelled by a

amma distribution [17] . 

Epidemic models presented above describe rapid outbreaks dur-

ng which normally the host population is assumed to be in a con-

tant state. For longer periods, deaths and births feed the popula-

ion with new susceptibles, possibly allowing the disease to per-

ist at a constant prevalence. This state renders an endemic state

n the population [17] . In this case, we account for birth and death

ate of the host population, whereby a good approximation is that

he population size N = S + I + R is constant. When determinis-

ic dynamics prevail a threshold on the value of the basic repro-

uction number exists. Conditions regarding this number guaran-

ee the disease persistence, but in epidemic models such persis-

ence can be dependent upon the magnitude of the stochastic fluc-

uations around the steady-state equilibrium. Furthermore, many

imes diseases are in an endemo-epidemic state. As endemic mod-

ls exhibit damped oscillations which converge toward an endemic

quilibrium, this equilibrium can be weakly stable with perturba-

ions (intrinsic or extrinsic), which excite and sustain the inherent

scillation behaviour [57] . This behaviour is due to heterogeneity

hat is added temporally to the coefficient of transmission, spa-

ially in the context of meta-populations, or by cohorts for age-

tructured models. Lastly, heterogeneity can be added statistically

n case of stochastic versions. For example, a stochastic version of

he endemic SIR model can utilize a Markov process, in which the

uture is independent of the past given the present, with a state

pace defined by the number of individuals in each of the three

lasses, and changes in the state space characterized by probabilis-

ic transition events. And as future events are independent on past

vents, the time to the next event follows a negative exponential

istribution. 

Over the years, a vast number of mathematical modeling ap-

roaches has been proposed, tackling the problem from differ-

nt perspectives. The prevailing taxonomy proposed by Siettos and

usso [58] encompasses three general categories: (1) statistical



4 S. Bekiros and D. Kouloumpou / Chaos, Solitons and Fractals 136 (2020) 109828 

Fig. 1. Updated taxonomy of mathematical models for contagious diseases (source [58] ). The new stochastic model lays in the intersection of categories (1) statistical 

methods and (2) state-space models of epidemic spreads. 
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methods of outbreaks and their identification of spatial patterns

in real epidemics, (2) state-space models of the evolution of a “hy-

pothetical” or on-going epidemic spread, and (3) machine learning

methods, all utilized also for predictability purposes vis-à-vis an

ongoing epidemic. In particular, the first category includes i) re-

gression methods [59–64] , ii) times series analysis, namely ARIMA

and seasonal ARIMA approaches [65–68] , iii) process control meth-

ods including cumulative sum (CUSUM) charts [69–74] and expo-

nentially weighted moving average (EWMA) methods [75,76] , as

well as iv) Hidden Markov models (HMM) [77,78] . The second cat-

egory incorporates i) “continuum” models in the form of differen-

tial and/or (integro)-partial differential equations [79–82] , ii) dis-

crete and continuous-time Markov-chain models [83–85] , iii) com-

plex network models which relax the hypotheses of the previous

stochastic models that interactions among individuals are instanta-

neous and homogeneous [86–91] , and iv) Agent-based models [92–

95] . Lastly, the third category includes well-known machine learn-

ing approaches widely used in computer science, such as i) arti-

ficial neural networks [96] , ii) web-based data mining [97,98] and

iii) surveillance networks [99] , to name a few. 

For the first time in the relevant literature, we introduce a new

stochastic model laying in the intersection of categories (1) and (2),

called “Stereographic Brownian Diffusion Epidemiology Model

(SBDiEM) ”. Fig. 1 presents a graphical overview of the models uti-

lized so far, and the “positioning” of our novel approach for mod-

elling infectious diseases. 

4. Mathematical formulation 

4.1. Preliminaries 

4.1.1. The n -Sphere S n 

Definition 4.1. Let n ∈ N 

∗ = { 1 , 2 , 3 , . . . } . The n -dimensional sphere

S n with center (c 1 , . . . , c n +1 ) and radius a > 0 is (defined to be)

the set of all points x = (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 satisfying (x 1 −
c 1 ) 

2 + . . . + (x n +1 − c n +1 ) 
2 = a 2 . Thus, 

S n = { (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 
∣∣ (x 1 − c 1 ) 

2 + . . . 

2 2 
+(x n +1 − c n +1 ) = a } w
.1.2. Stereographic projection coordinates 

efinition 4.2. We consider R 

n ⊂ R 

n +1 to be the hyperplane given

y x n +1 = 0 . For convenience, we will let ( x 1 , x 2 , . . . , x n , x n +1 )
e coordinates on R 

n +1 and ( ξ1 , ξ2 , . . . , ξn ) be coordinates

n R 

n ⊂ R 

n +1 . Let S n = { (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 
∣∣x 2 

1 
+ . . . + x 2 n +

(x n +1 − a ) 2 = a 2 } . The stereographic projection coordinates of S n is

he map � : S n − { 0 , 0 , . . . , 2 a } → R 

n given by 

( x 1 , x 2 , . . . , x n , x n +1 ) = 

(
2 ax 1 

2 a − x n +1 

, . . . , 
2 ax n 

2 a − x n +1 

)
. 

This map defines coordinates ( ξ1 , ξ2 , . . . , ξn ) on S n so that the

oint ( x 1 , x 2 , . . . , x n , x n +1 ) of S n has coordinates ( ξ1 , ξ2 , . . . , ξn ) ,

here 

1 = 

2 ax 1 
2 a − x n +1 

, . . . , ξn = 

2 ax n 

2 a − x n +1 

. 

he inverse map is given by 

x 1 = 

4 a 2 ξ1 

ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, . . . , x n = 

4 a 2 ξn 

ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, 

 n +1 = 

2 a 
(
ξ 2 

1 + . . . + ξ 2 
n 

)
ξ 2 

1 
+ . . . + ξ 2 

n + 4 a 2 
. 

.1.3. Spherical coordinates 

The points of the 2-sphere with center at the origin and radius

 may also be described in spherical coordinates in the following

ay: x 2 = a sin ϕ, where 0 ≤ ϕ < 2 π . 

S 2 = { x = ( a cos θ sin ϕ, a sin θ sin ϕ, a cos ϕ ) ∈ R 

3 
∣∣0 ≤ θ < 

 π, 0 ≤ ϕ ≤ π} i.e. 

 1 = a cos θ sin ϕ 

 2 = a sin θ sin ϕ 

 3 = a cos ϕ, 

here 0 ≤ θ < 2 π and 0 ≤ ϕ ≤ π . 
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.1.4. The Laplace-Beltrami operator 

efinition 4.3. A C ∞ differentiable manifold of dimension n is a

et M together with a family of one-to-one maps x α: U α → M of

pen sets U α ⊂ R 

n into M such that 

1. 
⋃ 

α x α(U α) = M. 

2. For each pair α, β with x α(U α) 
⋂ 

x β (U β ) = W 	 = ∅ , we have

that x −1 
α (W ) , x −1 

β
(W ) are open sets in R 

n and that x −1 
β

◦
x α, x −1 

α ◦ x β are C ∞ differentiable maps. 

3. The family { U α , x α} is maximal relative to conditions 1 and 2. 

Each pair ( x α , U α) is called a coordinate chart on M . (For more

etails see [100] ) 

efinition 4.4. A C r function f : M → R , where M is a C ∞ differ-

ntial manifold is a function f , such that f ◦ x α : U α → R is C r for

very cordinate chart ( x α , U α) on M . 

Let g = 

[
g i j 

]
be the Riemmanian metric tensor on a Riem-

anian manifold M . This means that, in any coordinate chart

( x 1 , x 2 , . . . , x n ) on M , the length element can be computed by 

 s 2 = 

n ∑ 

j=1 

n ∑ 

i =1 

g i j d x i d x j . 

iven local coordinates (x 1 , . . . , x n ) , we can easily compute the

atrix g = 

[
g i j 

]
by the inner product 

 i j = 

∂x a 

∂x i 
· ∂x a 

∂x j 

see [100] ). We denote by g ij the elements of the inverse matrix

 

−1 . 

efinition 4.5. The Laplace-Beltrami operator 
M 

associated with

he metric g is defined by 

M 

f = 

1 √ 

det(g) 
·
∑ 

i 

∂ 

∂x i 

( √ 

det(g) ·
∑ 

j 

g i j ∂ f 

∂x j 

) 

, (4.1) 

here f is a C r function on M . 

In this work we are interested in the case where M = S 2 ,

.e., the 2 -dimensional sphere. We will denote the corresponding

aplace-Beltrami operator of S 2 by 
2 or just 
 using the spherical

oordinates. If M = S 2 , i.e. 

 = S 2 = { x = ( a cos θ sin ϕ, a sin θ sin ϕ , a cos ϕ ) ∈ R 

3 | 0 ≤ θ < 

2 π, 0 ≤ ϕ ≤ π} , 
e have 

 θ = 

∂x 

∂θ
= ( −a sin θ sin ϕ, a cos θ sin ϕ, 0 ) 

 ϕ = 

∂x 

∂ϕ 

= ( a cos θ cos ϕ, a sin θ cos ϕ, −a sin ϕ ) 

M = S n = 

{ 

x = 

( 

4 a 2 ξ1 

ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, . .

x ξk 
= 

∂x 

∂ξk 

= 

( 

−8 a 2 ξ1 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

−8 a 2 ξk +1 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

, . . . , 
(ξ

1

 = 

[
g i j 

]
= 

( 

x θ x θ x θ x ϕ 
x ϕ x θ x ϕ x ϕ 

) 

, 

.e., 

 = 

[
g i j 

]
= 

( 

a 2 sin 

2 ϕ 0 

0 a 2 

) 

nd 

 

−1 = 

[
g i j 
]

= 

⎛ 

⎝ 

1 

a 2 sin 2 ϕ 
0 

0 

1 
a 2 

⎞ 

⎠ . 

ence the Laplace-Beltrami operator of a smooth function f on S 2 

s 

2 f = 

1 

a 2 sin ϕ 

2 ∑ 

i =1 

∂ 

∂x i 

( 

a 2 sin ϕ 

2 ∑ 

j=1 

g i j ∂ f 

∂x j 

) 

, (4.2) 

here x 1 = θ and x 2 = ϕ. Thus 

2 f = 

1 

a 2 sin ϕ 

2 ∑ 

i =1 

∂ 

∂x i 

[
a 2 sin ϕ 

(
g i 1 f θ + g i 2 f ϕ 

)]
r 

2 f = 

1 

a 2 sin ϕ 

(
f θθ

sin ϕ 

+ f ϕ cos ϕ + f ϕϕ sin ϕ 

)
. (4.3) 

n case where the function f is independent of θ the Laplace-

eltrami operator of f is 

2 f = 

1 

a 2 sin ϕ 

(
f ϕ cos ϕ + f ϕϕ sin ϕ 

)
. (4.4) 

Generally the Laplace-Beltrami operator of a smooth function f

n S n is 

n f = 

1 √ 

det ( g ) 
·

n ∑ 

i =1 

∂ 

∂θi 

( √ 

det ( g ) ·
n ∑ 

j=1 

g i j ∂ f 

∂θ j 

) 

, (4.5) 

here 

et (g) = a 2 n 
n ∏ 

k =2 

( sin θk ) 
2(k −1) 

, (4.6) 

 

i j = 0 , if i 	 = j, g ii = 

1 

a 2 sin 

2 θi +1 · . . . · sin 

2 θn 

and θn = ϕ. 

If f is independent of θ1 , θ2 , ..., θn −1 , the Laplace Beltrami oper-

tor of f is 

n f = 

1 

a 2 

(
( n − 1 ) cot ϕ · ∂ f 

∂ϕ 

+ 

∂ 2 f 

∂ϕ 

2 

)
. (4.7) 

Using Stereographic projection coordinates, if M = S n , i.e. 

4 a 2 ξn 

2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, 
2 a 
(
ξ 2 

1 + . . . + ξ 2 
n 

)
ξ 2 

1 
+ . . . + ξ 2 

n + 4 a 2 

) 

∈ R 

n +1 

∣∣∣∣∣, ξ1 , . . . , ξn ∈ R 

}

e have 

 

−8 a 2 ξk −1 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

, 
4 a 2 

(∑ n 
i =1 ξ

2 
i 

− 2 ξ 2 
k 

+ 4 a 2 
)

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

, 

8 a 2 ξn ξk 

. . + ξ 2 
n + 4 a 2 ) 2 

, 
16 a 3 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

)
. 
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Hence 

g ii = 

16 a 4 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

and g i j = 0 , if i 	 = j. 

Thus we have 

g ii = 

(ξ 2 
1 + . . . + ξ 2 

n + 4 a 2 ) 2 

16 a 4 
, g i j = 0 , if i 	 = j, and √ 

det (g) = 

(4 a 2 ) n (
ξ 2 

1 
+ . . . + ξ 2 

n + 4 a 2 
)n . 

Therefore, the Laplace Beltrami operator of a smooth function f on

S 2 , using Stereographic projection coordinates is 


2 f = 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 

(
∂ 2 f 

∂ξ 2 
1 

+ 

∂ 2 f 

∂ξ 2 
2 

)
(4.8)

4.1.5. Brownian motion on a riemannian manifold 

Definition 4.6. Let M be a Riemannian manifold (see definition

1.5 ) and 
 its corresponding Laplace-Beltrami operator. Any func-

tion P ( t, x, y ) on (0, ∞ ) × M × M satisfying the differential equa-

tion 

∂P 

∂t 
− 1 

2 


x P = 0 , (4.9)

where 
x is 
 acting on the x-variables and the initial condition

P ( t, x, y ) → δx (y ) as , t → 0 

+ (4.10)

(where δx ( y ) is the delta mass at x ∈ M ) is called a fundamental

solution of the heat Eq. (4.9) on M . 

The smallest positive fundamental solution of the heat

Eqs. (4.9) and (4.10) is the heat kernel on M . It has been proved by

J. Dodziak [101] , that the heat kernel always exists, and is smooth

in ( t, x, y ). Moreover the heat kernel possesses the following prop-

erties. 

1. Symmetry in x, y , that is 

P (t, x, y ) = P (t, y, x ) 

2. The semigroup identity: For any s ∈ (0, t ) 

P (t, x, y ) = 

∫ 
M 

P (s, x, z) P (t − s, z, y ) dμ(z) , 

where d μ is the area measure element of M. In polar coor-

dinates dμ = 

√ | g | dθ1 . . . θn , where θn = ϕ and | g | is given by

(4.6) . 

3. The total mass inequality, i.e., for all t > 0 and x ∈ M ∫ 
M 

P (t, x, y ) dμ(y ) ≤ 1 . (4.11)

In case where M is compact and smooth, there is only one so-

lution of (4.9) and (4.10) which is positive and satisfies ∫ 
M 

P (t, x, y ) dμ(y ) = 1 (4.12)

Definition 4.7. A process X t , t ≥ 0 is a Markov process if for any

t, s ≥ 0, the conditional distribution of X t+ s , given the informa-

tion about the process up to time t , is the same as the conditional

distribution of X t+ s , given X t . 

Definition 4.8. The Brownian motion X t , t ≥ 0, on a Riemannian

manifold M is a Markov process with transition density function

P ( t, x, y ) the heat kernel associated with the Laplace-Beltrami op-

erator. 

Remark 4.1. In the case where M = S n , n ≥ 2, the transition den-

sity function P ( t, x, y ) of the Brownian motion X t depends only on t

t

nd d ( x, y ), the distance between x and y . Thus in spherical coordi-

ates it depends on t and the angle ϕ between x and y . Hence, the

ransition density function of the Brownian motion can be written

s 

 (t, x, y ) = p(t, ϕ) , (4.13)

here p ( t , ϕ) is the solution of 

∂ p 

∂t 
= 

1 

2 


n p = 

1 

2 a 2 

(
( n − 1 ) cot ϕ · ∂ p 

∂ϕ 

+ 

∂ 2 p 

∂ϕ 

2 

)
(4.14)

nd 

lim 

→ 0 + 
aA n −1 p(t, ϕ) · sin 

n −1 (ϕ) = δ(ϕ) . (4.15)

ere δ( · ) is the Dirac delta function on R and A n denotes the area

f the n-dimensional sphere S n with radius a . It is well known that

102] 

 n = 

2 π
n +1 

2 a n 

�( n +1 
2 

) 
, (4.16)

here �( · ) is the Gamma function. More precisely 

 n = 

2 π
n +1 

2 a n 

( n −1 
2 

)! 
for n odd (4.17)

 n = 

2 

n ( n 
2 

− 1)! π
n 
2 a n 

(n − 1)! 
for n even (4.18)

emark 4.2. The fact that S n is a compact and smooth manifold

mplies that (4.14) and (4.15) has a unique positive solution which

lso satisfies 
 

S n 
P (t, x, y ) dμ(y ) = 1 . (4.19)

urthermore, as t → ∞ , P ( t, x, y ) approaches the uniform density

n S n , i.e. P ( t, x, y ) → c , where 

 = 

1 

A n 
. 

In the sequel for typographical convenience we will write X t 

nstead of { X t } t ≥ 0. 

.2. Transition density function p(t, ϕ) of X t , t > 0 

In this section we shall represent the transition density func-

ion p ( t , ϕ) of the position X ( t ) of a biological carrier (infected in-

ividual) of virus Y at any given time t . For the next sections we

uppose that the infected individual is at position X ( t ) at any given

ime t , namely the path defined by its motion is considered infec-

ious. X t , t ≥ 0 describes a Brownian motion on a 2-dimensional

phere S 2 of radius a . From the (4.14), (4.15) and (4.17) the transi-

ion density function p ( t , ϕ) of X t is the unique solution of 

∂ p 

∂t 
= 

1 

2 a 2 sin ϕ 

(
∂ 2 p(t, ϕ) 

∂ϕ 

2 
sin ϕ + 

∂ p 

∂ϕ 

cos ϕ 

)
(4.20)

nd 

lim 

→ 0 + 
2 πa 2 sin ϕ · p(t, ϕ) = δ(ϕ) . (4.21)

The solution of the diffusion equation 

∂K(t, ϕ) 

∂t 
= 

1 

sin ϕ 

(
cos ϕ 

∂K(t, ϕ) 

∂ϕ 

+ sin ϕ 

∂ 2 K(t, ϕ) 

∂ϕ 

2 

)
(4.22)

ith initial condition 

lim 

→ 0 + 
2 π sin (ϕ) K(t, ϕ) = δ(ϕ) (4.23)
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s given by the function 

(t, ϕ) = 

1 

4 π

∑ 

n ∈ N 
(2 n + 1) exp 

(
−n (n + 1) 

√ 

2 t 
)
P 0 n ( cos ϕ) . (4.24)

ee [103] . Here P 0 n , n = 0 , 1 , 2 , . . . , is the associated Legendre poly-

omials of order zero, i.e. 

 

0 
n (x ) = 

1 

2 

n n ! 
· d n 

dx n 

[
(x 2 − 1) n 

]
(4.25) 

his fact implies the following 

roposition 4.1. The transition density function of the Brownian mo-

ion X t , t ≥ 0 on S 2 with radius a it is given by the function 

p(t, ϕ) = 

1 

4 πa 2 

∑ 

n ∈ N 
(2 n + 1) exp 

(
−n (n + 1) 

√ 

t 

a 

)
P 0 n ( cos ϕ) 

(4.26) 

roof. First we prove that p ( t , ϕ) satisfies the differential equa-

ion 

∂ p 

∂t 
= 

1 

2 a 2 sin ϕ 

(
∂ 2 p(t, ϕ) 

∂ϕ 

2 
sin ϕ + 

∂ p 

∂ϕ 

cos ϕ 

)
. 

e have that 

p(t, ϕ) = 

1 

a 2 
K 

(
t 

2 a 2 
, ϕ 

)
, 

here K ( t , ϕ) is given by the (4.24) , therefore 

∂ p(t, ϕ) 

∂t 
= 

1 

2 a 4 
∂K 

∂t 
, 

∂ p(t, ϕ) 

∂ϕ 

= 

1 

a 2 
∂K 

∂ϕ 

and 

∂ 2 p(t, ϕ) 

∂ϕ 

2 
= 

1 

a 2 
∂ 2 K 

∂ϕ 

2 
. 

owever from the (4.22) 

∂K 

∂t 
= 

1 

sin ϕ 

(
cos ϕ 

∂K 

∂ϕ 

+ sin ϕ 

∂ 2 K 

∂ϕ 

2 

)
, (4.27) 

ence 

 a 4 
∂ p(t, ϕ) 

∂t 
= 

1 

sin ϕ 

(
a 2 cos ϕ 

∂ p(t, ϕ) 

∂ϕ 

+ a 2 sin ϕ 

∂ 2 p(t, ϕ) 

∂ϕ 

2 

)
, 

.e. 

∂ p(t, ϕ) 

∂t 
= 

1 

2 a 2 sin ϕ 

(
cos ϕ 

∂ p(t, ϕ) 

∂ϕ 

+ sin ϕ 

∂ 2 p(t, ϕ) 

∂ϕ 

2 

)
. 

urthermore p ( t , ϕ) satisfies the 

lim 

→ 0 + 
2 π sin (ϕ) p(t, ϕ) = lim 

t→ 0 + 
2 πa 2 

1 

a 2 
sin (ϕ) K 

(
t 

2 a 2 
, ϕ 

)
nd if we set u = 

t 
2 a 2 

we imply that 

lim 

→ 0 + 
2 π sin (ϕ ) K 

(
t 

2 a 2 
, ϕ 

)
= lim 

u → 0 + 
2 π sin (ϕ ) K(u, ϕ ) = δ(ϕ) . 

herefore 

lim 

→ 0 + 
2 πa 2 sin (ϕ) p(t, ϕ) = δ(ϕ) . 
nd this complete the proof. � {
.2.1. Stochastic differential equation of the brownian motion in local 

oordinates 

We recall the following well-known fact 

heorem 4.1. Let 

(x ) = 

[
σ jk (x ) 

]
, with 1 ≤ j ≤ n, 1 ≤ k ≤ m, 

e such that a (x ) = σ (x ) · σ T (x ) is positive definite. If X t is the Ito

iffusion process 

 X t = b(X t ) d t + σ (X t ) d B t , (4.28)

hen, its generator A is given by the formula 

f (x ) = 

∑ 

i 

b i (x ) 
∂ f 

∂x i 
+ 

1 

2 

∑ 

i, j 

(σσ T ) i, j (x ) 
∂ 2 f 

∂ x i ∂ x j 
. 

Conversely, the operator A given above is the generator of dif-

usion (4.28) . For the proof see [104] . 

Case of spherical coordinates 

The generator of Brownian motion on S 2 in spherical coordi-

ates is 

f = 

1 

2 


2 f, 

.e. 

f = 

cos ϕ 

2 a 2 sin ϕ 

∂ f 

∂ϕ 

+ 

1 

2 

(
1 

a 2 sin 

2 ϕ 

∂ 2 f 

∂θ2 
+ 

1 

a 2 
∂ 2 f 

∂ϕ 

2 

)
. 

Therefore, the Brownian motion on S 2 in spherical coordinates

s the solution of the stochastic differential equation 

 X t = 

(
0 , 

cos ϕ(t) 

2 a 2 sin ϕ(t) 

)
d t + 

( 1 
a sin ϕ(t) 

0 

0 

1 
a 

) ( 

d B 1 (t) 
d B 2 (t) 

) 

, 

here 

 t = ( θ (t) , ϕ(t) ) . 

Case of sterographic projection coordinates 

Expressed in stereographic projection coordinates, the generator

f Brownian motion on S 2 is 

f = 

1 

2 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 

(
∂ 2 f 

∂ξ 2 
1 

+ 

∂ 2 f 

∂ξ 2 
2 

)
. 

ence, the Brownian motion on S 2 in stereographic projection co-

rdinates is the solution of the stochastic differential equation 

 X t = 

⎛ 

⎝ 

( x 1 (t) 2 + x 2 2 (t)+4 a 2 ) 
4 a 2 

0 

0 

( x 2 1 (t)+ x 2 2 (t)+4 a 2 ) 
4 a 2 

⎞ 

⎠ 

( 

d B 1 (t) 
d B 2 (t) 

) 

, 

(4.29) 

here 

 t = ( x 1 (t) , x 2 (t) ) . 

.3. Expectations of exit times of X ( t ) 

We recall some basic definitions. 

efinition 4.9. A measurable space { �, F} is said to be equipped

ith a filtration { F t }, t ∈ [0 , + ∞ ) , if for every t ≥ 0 { F t } is a σ -

lgebra of subsets of � such that F t ⊂ F and for every t 1 , t 2 ∈
0 , + ∞ ) such that t 1 < t 2 , we have that F t 1 ⊂F t 2 . (i.e. { F t } is an

ncreasing family of sub σ -algebras of F). 

efinition 4.10. Let us consider a measurable space { �, F}
quipped with a filtration { F t }. A random variable T is a stopping

ime with respect to the filtration { F t }, if for every t ≥ 0 

 ω ∈ �| T (ω) ≤ t} ∈ F t . 
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Let X t be the Brownian motion in S n and D ⊂ S n a domain.

Then 

T = inf { t ≥ 0 | X t / ∈ D } 
is a stopping time with respect to F t = σ { X s | 0 ≤ s ≤ t} , called the

exit time on ∂D . 

Proposition 4.2. Let ϕ0 ∈ [0, π ) be fixed. We consider the set D in

S 2 , such that 

D = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ [0 , ϕ 0 ) } . 
Of course, 

∂D = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ = ϕ 0 } . 
If X t is the position of the biological carrier of the virus Y at a

given time t starting at the point 

A = (θ, ϕ) ∈ D, 

and 

T = inf { t ≥ 0 | X t / ∈ D } , 
then the expectation of T is given by 

E A [ T ] = 2 a 2 ln 

(
1 + cos ϕ 

1 + cos ϕ 0 

)
. (4.30)

Proof. Based on [105] , 

u (θ, ϕ) = E A [ T ] 

we have the unique solution of the differential equation 

1 

2 


2 u = −1 , (4.31)

with boundary condition as 

u (θ, ϕ 0 ) = 0 . 

Here 
2 is the Laplace-Beltrami operator on S 2 . By symmetry of D ,

it follows that the expectation value of T is independent of θ . From

(4.4) the differential Eq. (4.31) takes the form 

1 

2 a 2 

[
cot (ϕ ) 

du 

dϕ 

+ 

d 2 u 

dϕ 

2 

]
= −1 , (4.32)

with boundary condition 

u (ϕ 0 ) = 0 . (4.33)

Set 

f (ϕ) = 

du 

dϕ 

. 

hence from (4.32) 

1 

2 a 2 

[
cot (ϕ) f (ϕ) + 

df (ϕ) 

dϕ 

]
= −1 , 

or 

cos (ϕ) f (ϕ) + sin (ϕ) 
df (ϕ) 

dϕ 

= −2 a 2 sin (ϕ) , 

Thus 

f (ϕ) = − 2 a 2 

sin ϕ 

∫ ϕ 

0 

sin ω dω + 

c 1 
sin ϕ 

. 

Therefore, 

u (ϕ) = −2 a 2 
∫ ϕ 

ϕ 0 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 

ϕ 0 

1 

sin x 
dx + c 2 . (4.34)

However (see [104] ) 

u (ϕ) = E A [ T ] < ∞ , for ϕ ∈ [0 , ϕ 0 ) 
ence 

 1 = 0 . 

Furthermore, we have 

 (ϕ 0 ) = 0 , i.e. c 2 = 0 

hus, 

 (ϕ) = 2 a 2 
∫ ϕ 0 

ϕ 

∫ x 
0 ( sin ω) dω 

( sin x ) 
dx. 

onsequently, 

 

A [ T ] = 2 a 2 
∫ ϕ 0 

ϕ 

∫ x 
0 ( sin ω) dω 

( sin x ) 
dx. 

Thus 

 

A [ T ] = 2 a 2 
∫ ϕ 0 

ϕ 

1 − cos x 

sin x 
dx, 

r 

 

A [ T ] = 2 a 2 
(∫ ϕ 0 

ϕ 

1 

sin x 
dx −

∫ ϕ 0 

ϕ 
( cot x ) dx 

)
, 

ence 

 

A [ T ] = 2 a 2 
[ 

ln 

(
tan 

(
ϕ 0 

2 

))
− ln 

(
tan 

(
ϕ 

2 

))
− ln ( sin ϕ 0 ) + ln ( sin ϕ) 

] 
. 

inally, 

 

A [ T ] = 2 a 2 ln 

(
1 + cos ϕ 

1 + cos ϕ 0 

)
. (4.35)

�

roposition 4.3. Let ϕ 1 , ϕ 2 ∈ (0, π ), such that ϕ1 < ϕ2 , are both

xed. We consider the set D in S 2 , such that 

 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ (ϕ 1 , ϕ 2 ) } . 
e have, 

D = { (θ, ϕ) | θ ∈ [0 , 2 π) , and ϕ = ϕ 1 or ϕ = ϕ 2 } . 
et X t be the position of the infectious individual Y is at a given time

 starting at the point 

 = (θ, ϕ) ∈ D, 

nd 

 = inf { t ≥ 0 | X t / ∈ D } , 
hen the expectation of T is given by 

 

A [ T ] = 

4 a 2 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

)
[ 

ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 2 
2 

)
) 

· ln 

( 

sin 

(
ϕ 
2 

)
sin 

(
ϕ 1 
2 

)
) 

− ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 
2 

)
) 

· ln 

( 

sin 

(
ϕ 2 
2 

)
sin 

(
ϕ 1 
2 

)
) ] 

(4.36)

roof. According to [105] , E ϕ [ t ] satisfies the Poisson equation on D

ith Dirichlet boundary data. By uniqueness 

 (θ, ϕ) = E A [ T ] 

s the unique solution of the differential Eq. (4.31) , i.e., 

1 

2 


2 u = −1 , 

ith boundary condition 

 (θ, ϕ 1 ) = u (θ, ϕ 2 ) = 0 . 
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ere 
2 is the Laplace-Beltrami operator on S 2 . By the symmetry

f D , it follows that the expectation value of T is independent of

. From (4.4) the differential Eq. (4.31) takes the form (4.32) with

oundary condition 

 (θ, ϕ 1 ) = u (θ, ϕ 2 ) = 0 . (4.37)

Hence from (4.34) 

 (ϕ) = −2 a 2 
∫ ϕ 

ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 

ϕ 1 

1 

sin x 
dx + c 2 . 

owever 

 (θ, ϕ 1 ) = u (θ, ϕ 2 ) = 0 , 

.e. 

2 a 2 
∫ ϕ 1 

ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 1 

ϕ 1 

1 

sin x 
dx + c 2 = 0 

nd 

2 a 2 
∫ ϕ 2 

ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 2 

ϕ 1 

1 

sin x 
dx + c 2 = 0 . 

hus 

 1 = 2 a 2 

∫ ϕ 2 
ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx ∫ ϕ 2 

ϕ 1 
1 

sin x 
dx 

nd 

 2 = 0 . 

onsequently, 

 

A [ T ] = 2 a 2 

( ∫ ϕ 1 

ϕ 

∫ x 
0 sin ωdω 

sin x 
d x + 

∫ ϕ 2 
ϕ 1 

∫ x 
0 sin ωdω 

sin x 
d x ∫ ϕ 2 

ϕ1 
1 

sin x 
d x 

·
∫ ϕ 

ϕ 1 

1 

sin x 
d x 

) 

. 

amely, 

 

A [ T ] = 2 a 2 
(∫ ϕ 

ϕ 1 

( cot x ) dx −
∫ ϕ 2 
ϕ1 ( cot x ) dx ∫ ϕ 2 

ϕ 1 
1 

sin x 
dx 

·
∫ ϕ 

ϕ 1 

1 

sin x 
dx 

)
, 

ence 

 

A [ T ] = 

2 a 2 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

)
[ 

ln 

( 

sin 
(

ϕ 
2 

)
cos 

(
ϕ 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 1 
2 

)
) 

· ln 

( 

sin 
(

ϕ 2 
2 

)
cos 

(
ϕ 1 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 2 
2 

)
) 

− ln 

( 

sin 
(

ϕ 2 
2 

)
cos 

(
ϕ 2 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 1 
2 

)
) 

· ln 

( 

sin 
(

ϕ 
2 

)
cos 

(
ϕ 1 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 
2 

)
) ] 

, 

rom which we imply 

 

A [ T ] = 

4 a 2 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

)
[ 

ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 2 
2 

)
) 

· ln 

( 

sin 
(

ϕ 
2 

)
sin 

(
ϕ 1 
2 

)
) 

− ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 
2 

)
) 

· ln 

( 

sin 
(

ϕ 2 
2 

)
sin 

(
ϕ 1 
2 

)
) ] 

(4.38) 

�

roposition 4.4. We consider the 2-dimensional sphere S 2 of radius

. Let two circles pass through the North pole, such that in stereo-

raphic coordinates are represented by the parallel lines ξ2 = b and

2 = c, where b, c ∈ R , say b < c. We consider the set D in S 2 , whose

tereographic projection is 

 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 ∈ (b, c) } . 
f course 

D = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 = b or ξ2 = c } . 
f X t is the position of the carrier of virus Y at a given time t starting

t the point A, where the stereogrpaphic projection coordinates of A

re 

(ξ1 , ξ2 ) ∈ D. 

nd 

 = inf { t ≥ 0 | X t ∈ D } , 
hen, 

 

A [ T ] = f (ξ1 , ξ2 ) − 2 a 2 ln 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)
, (4.39)

here 

f (ξ1 , ξ2 ) 

= 

1 

π

∫ ∞ 

0 

g(ξ , c) exp 
(

πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2 −b) 

c−b 

)
+ η

)2 
dη

1 

π

∫ ∞ 

0 

g(η, b) exp 
(

πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2 −b) 

c−b 

)
− η

)2 
dη

(4.40) 

nd 

(ξ , t) = 2 a 2 ln 

(
(c − b) 2 ln 

2 | ξ | 
π2 

+ t 2 + 4 a 2 
)

(4.41)

roof. As we have seen the function 

 

A [ T ] = U(ξ1 , ξ2 ) 

atisfies the differential equation 

1 

2 


2 U = −1 

ith boundary conditions 

(ξ1 , b) = U(ξ1 , c) = 0 . 

ere, 
2 is the Laplace-Beltrami operator on S 2 expressed in stere-

graphic projection coordinates. Hence, the differential equation

akes the form 

1 

2 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 
·
(

∂ 2 U 

∂ξ 2 
1 

+ 

∂ 2 U 

∂ξ 2 
2 

)
= −1 , 

r 

∂ 2 U 

∂ξ 2 
1 

+ 

∂ 2 U 

∂ξ 2 
2 

= − 32 a 4 (
ξ 2 

1 
+ ξ 2 

2 
+ 4 a 2 

)2 
. (4.42) 

owever the function 

 1 (ξ1 , ξ2 ) = −2 a 2 ln (ξ 2 
1 + ξ 2 

2 + 4 a 2 ) 

atisfies the differential Eq. (4.42) . Thus 

(ξ1 , ξ2 ) = −2 a 2 ln (ξ 2 
1 + ξ 2 

2 + 4 a 2 ) + f (ξ1 , ξ2 ) 

here f ( ξ 1 , ξ 2 ) satisfies 

∂ 2 f 

∂ξ 2 
1 

+ 

∂ 2 f 

∂ξ 2 
2 

= 0 , 

ith boundary conditions 

f (ξ1 , b) = 2 a 2 ln (ξ 2 
1 + b 2 + 4 a 2 ) 

nd 

f (ξ1 , c) = 2 a 2 ln (ξ 2 
1 + c 2 + 4 a 2 ) . 

f we take the transformation of variables x = ξ1 and y = ξ2 − b and

et the function φ(x, y ) = f (ξ1 , ξ2 ) , then φ( x, y ) we satisfy 

∂ 2 φ

∂x 2 
+ 

∂ 2 φ

∂y 2 
= 0 , 
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∂
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with boundary conditions 

φ(x, 0) = 2 a 2 ln (x 2 + b 2 + 4 a 2 ) 

and 

φ(x, β) = 2 a 2 ln (x 2 + c 2 + 4 a 2 ) 

where β = c − b. Now let z = x + yi and w = exp 

(
πz 
β

)
, i.e. z =

β ln w 

π . Thus, if w = u + v i, u, v ∈ R then 

u = exp 

(
πx 

β

)
cos 

(
πy 

β

)
and v = exp 

(
πx 

β

)
sin 

(
πy 

β

)
. 

(4.43)

Introducing the function ψ(u, v ) = φ(x, y ) . It follows that ψ( u, v )

satisfies 

∂ 2 ψ 

∂ u 

2 
+ 

∂ 2 ψ 

∂ v 2 
= 0 , 

with boundary conditions 

ψ(u, 0) = 2 a 2 ln 

(
β2 ln 

2 
u 

π2 
+ b 2 + 4 a 2 

)
, for u > 0 

and 

ψ(u, 0) = 2 a 2 ln 

(
β2 ln 

2 | u | 
π2 

+ c 2 + 4 a 2 
)

, for u < 0 . 

This is the standard Dirichlet boundary value problem for the half

line, and it is well known that (see e.g. [106] ) its solution is given

by the Poisson integral formula for the half-plane: 

ψ (u, v ) = 

1 

π

∫ ∞ 

−∞ 

v ψ (ξ , 0) 

v 2 + (u − ξ ) 2 
dξ , 

or 

ψ(u, v ) = 

1 

π

∫ 0 

−∞ 

v g(ξ , c) 

v 2 + (u − ξ ) 2 
dξ + 

1 

π

∫ ∞ 

0 

v g(ξ , b) 

v 2 + (u − ξ ) 2 
dξ , 

where 

g(ξ , t) = 2 a 2 ln 

(
β2 ln 

2 | ξ | 
π2 

+ t 2 + 4 a 2 
)

. 

Notice that g(−ξ , t) = g(ξ , t) . Hence, 

ψ(u, v ) = 

1 

π
v 
∫ ∞ 

0 

(
g(ξ , c) 

v 2 + (u + ξ ) 2 
+ 

g(ξ , b) 

v 2 + (u − ξ ) 2 

)
dξ , 

where u, v are given in (4.43) . Therefore 

φ(x, y ) = 

1 

π
exp 

(
πx 

β

)
sin 

(
πy 

β

)∫ ∞ 

0 

g(η, c) 

exp 

(
2 πx 
β

)
sin 

2 
(

πy 
β

)
+ 

(
exp 

+ 

1 

π
exp 

(
πx 

β

)
sin 

(
πy 

β

)∫ ∞ 

0 

g(η, b) 

exp 

(
2 πx 
β

)
sin 

2 
(

πy 
β

)
+ 

(
exp 

(
πx 
β

)
cos

i.e. 

f (ξ1 , ξ2 ) = 

1 

π

∫ ∞ 

0 

g(η, c) exp 

(
πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2

c−

+ 

1 

π

∫ ∞ 

0 

g(η, b) exp 

(
πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2 −b) 

c−b 

)
− η

)2

Finally 

E A [ T ] = f (ξ1 , ξ2 ) − 2 a 2 ln 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)
. 
�

cos 
(

πy 
β

)
+ η

)2 
dη

− η
)2 

dη, 

+ η
)2 

dη

.3.1. Hitting probabilities 

roposition 4.5. Let ϕ 1 , ϕ 2 ∈ (0, π ), such that ϕ1 < ϕ2 , are both

xed. We consider the sets D 1 , D 2 in S 2 , such that 

 1 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ (ϕ 1 , π ] } 
nd 

 2 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ [0 , ϕ 2 ) } . 
e have, 

D 1 = { (θ, ϕ) | θ ∈ [0 , 2 π) , and ϕ = ϕ 1 } 
nd 

D 2 = { (θ, ϕ) | θ1 ∈ [0 , 2 π) , and ϕ = ϕ 2 } . 
f X t is the position of the infected (I) at a given time t starting at the

oint 

 = (θ, ϕ) ∈ D 1 ∩ D 2 . 

nd in case 

 1 = inf { t ≥ 0 | X t / ∈ D 1 } , 

 2 = inf { t ≥ 0 | X t / ∈ D 2 } 
nd 

 = inf { t ≥ 0 | X t / ∈ D 1 ∩ D 2 } , 
hen the probabilities 

 r A { T = T 1 } and P r A { T = T 2 } 
re given by 

 r A { T = T 1 } = 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( ϕ 2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) (4.44)

nd 

 r A { T = T 2 } = 

ln 

(
tan ( ϕ 2 ) 
tan ( 

ϕ 1 
2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) . (4.45)

roof. It is known that (see [21] ), 

 (θ, ϕ) = P r A { T = T 1 } 

s the unique solution of the differential equation 

1 


n u = 0 , (4.46)

2 
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ith boundary condition 

 (θ, ϕ 1 ) = 1 and u (θ1 , . . . , θn −1 , ϕ 2 ) = 0 

ere 
n is the Laplace-Beltrami operator on S 2 . By the symmetry

f D , it follows that the probability value of T = T 1 is independent

f θ . From (4.7) the differential Eq. (4.46) takes the form 

1 

2 a 2 

[
(n − 1) cot (ϕ ) 

du 

dϕ 

+ 

d 2 u 

dϕ 

2 

]
= 0 , (4.47) 

ith boundary condition 

 (ϕ 1 ) = 1 and u (ϕ 2 ) = 0 . (4.48)

In we set 

f (ϕ) = 

du 

dϕ 

, 

ence from (4.47) 

1 

2 a 2 

[
cot (ϕ) f (ϕ) + 

df (ϕ) 

dϕ 

]
= 0 , 

r 

os (ϕ) f (ϕ) + sin (ϕ) 
df (ϕ) 

dϕ 

= 0 . 

Thus 

f (ϕ ) = 

c 1 
sin ϕ ) 

, 

.e. 

 (ϕ) = 

∫ ϕ 

ϕ 2 

c 1 
sin x 

dx + c 2 . (4.49)

owever, 

 (ϕ 1 ) = 1 and u (ϕ 2 ) = 0 , 

ence 

 1 = − 1 ∫ ϕ 2 
ϕ 1 

1 
sin x 

dx 

nd 

 2 = 0 . 

hus 

 (ϕ) = 

∫ ϕ 2 
ϕ 

1 
sin x 

dx ∫ ϕ 2 
ϕ 1 

1 
sin x 

dx 
. 

onsequently, 

 r A { T = T 1 } = 

∫ ϕ 2 
ϕ 

1 
sin x 

dx ∫ ϕ 2 
ϕ 1 

1 
sin x 

dx 
. 

r 

 r A { T = T 1 } = 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( ϕ 2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) (4.50) 

Moreover, 

 r A { T = T 2 } = 1 − P r A { T = T 1 } , 
ence 

 r A { T = T 2 } = 

ln 

(
tan ( ϕ 2 ) 
tan ( 

ϕ 1 
2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) . (4.51) 
�

roposition 4.6. We consider the 2-dimensional sphere S 2 of radius

. Let two circles pass through the North Pole, such that in stereo-

raphic coordinates are represented by the parallel lines ξ2 = b and

2 = c, where b, c ∈ R , with b < c. Next consider the sets D 1 , D 2 in

 

2 , for which the stereographic projections are 

 1 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 ∈ (b, + ∞ ) } 
nd 

 2 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 ∈ (−∞ , c) } . 
f course, 

D 1 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 = b } 
nd 

D 2 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 = c } . 
et X t be the position of the carrier of virus Y at a given time t start-

ng at the point A, and the stereographic projection coordinates of A

re 

(ξ1 , ξ2 ) ∈ D 1 ∩ D 2 . 

f 

 1 = inf { t ≥ 0 | X t / ∈ D 1 } , 

 2 = inf { t ≥ 0 | X t / ∈ D 2 } 
nd 

 = inf { t ≥ 0 | X t / ∈ D 1 ∩ D 2 } , 
hen 

 r A { T = T 1 } = 

c − ξ2 

c − b 
and P r A { T = T 2 } = 

ξ2 − b 

c − b 
. (4.52)

roof. It is known that (see [21] ) the function 

 (ξ1 , ξ2 ) = P r A { T = T 1 } 
s the unique solution of the differential equation 

1 

2 


2 u = 0 (4.53) 

ith boundary condition 

 (ξ1 , b) = 1 and u (ξ1 , c) = 0 . (4.54)

ere, 
2 , is the Laplace-Beltrami operator on S 2 expressed in the

tereographic projection coordinates. Hence from (4.8) the differ-

ntial Eq. (4.53) takes the form 

1 

2 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 
·
(

∂ 2 u 

∂ξ 2 
1 

+ 

∂ 2 u 

∂ξ 2 
2 

)
= 0 , 

r 

∂ 2 u 

∂ξ 2 
1 

+ 

∂ 2 u 

∂ξ 2 
2 

= 0 . (4.55) 

rom (4.54) and (4.55) we see easily that 

 (ξ1 , ξ2 ) = 

c − ξ2 

c − b 
. 

herefore, 

 r A { T = T 1 } = 

c − ξ2 

c − b 
and P r A { T = T 2 } = 

ξ2 − b 

c − b 
. 
�
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4.3.2. Moment generating functions 

Proposition 4.7. Let ϕ 0 ∈ [0 , π) be fixed. We consider the set D in

S 2 , such that 

D = { (θ, ϕ) | θ ∈ [0 , 2 π) , and ϕ ∈ [0 , ϕ 0 ) } . 
Then, 

∂D = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ = ϕ 0 } . 
If X t is the infectious position at a given time t starting at the point 

A = (θ, ϕ) ∈ D, 

and 

T = inf { t ≥ 0 | X t / ∈ D } , 
then the expectation of exp (−λT ) is given by 

E A [ exp (−λT )] = 

P ν ( cos ϕ) 

P ν ( cos ϕ 0 ) 
, (4.56)

where ν is such that ν(ν + 1) = −2 a 2 λ and P ν ( · ) is the Legendre

function 

P ν (z) = P −ν−1 (z) = 

1 

π

∫ π

0 

(z + 

√ 

z 2 − 1 cos ϕ ) νdϕ , 

where the multiple-valued function (z + 

√ 

z 2 − 1 cos ϕ) ν is to be de-

termined in such a way that for ϕ = 

π
2 it is equal to (the principal

value of) z ν (which is, in particular, real for positive z and real ν). 

Proof. If λ > − λ1 
2 , where λ1 is the first Dirichlet eigenvalue of

D ⊂ S 2 , then 

E A [ exp (−λT )] 

it satisfies the differential equation 

1 

2 


2 u = λu (ϕ) (4.57)

with boundary condition 

u (ϕ 0 ) = 1 . (4.58)

Here 
2 is the Laplace-Beltrami operator on S 2 . By the symmetry

of D , it follows that the expectation of exp [ −λT ] is independent of

θ . Hence u is independent of θ . From (4.4) the differential equation

(4.57) takes the form 

1 

2 a 2 sin ϕ 

(
du 

dϕ 

cos ϕ + 

d 2 u 

dϕ 

2 
sin ϕ 

)
= λu (ϕ) , 

i.e. 

d 

dϕ 

(
du 

dϕ 

sin ϕ 

)
−
(
2 λa 2 sin ϕ 

)
u (ϕ) = 0 . (4.59)

If we set 

z = cos ϕ, 

then 

du 

dϕ 

= − sin ϕ 

du 

dz 

and (4.59) transforms to 

(1 − z 2 ) 
d 2 u 

dz 2 
− 2 z 

du 

dz 
− 2 λa 2 u = 0 , 

or 

(1 − z 2 ) 
d 2 u 

dz 2 
− 2 z 

du 

dz 
+ ν(ν + 1) u = 0 . 

This is Legendre’s differential equation. However, u ( ϕ) is bounded

for all ϕ ∈ [0 , π ] and u (ϕ 0 ) = 1 . Therefore (see [106] ), the solution

of (4.59) is 

u (ϕ) = 

P ν ( cos ϕ) 

P ν ( cos ϕ 0 ) 
, 
.e. 

 

A [ exp (−λT ) = 

P ν ( cos ϕ) 

P ν ( cos ϕ 0 ) 
, 

here ν is such that ν(ν + 1) = −2 a 2 λ. �

.4. Reflection principle 

heorem 4.2. Let X t be the position of the infectious carrier of virus

 at a given time t starting at the point 

 = (θ, ϕ) ∈ D, 

here 

 = 

{
(θ, ϕ) ∈ S 2 

∣∣θ ∈ [ 

f 

 = inf { t ≥ 0 | X t / ∈ D } , 
hen 

 r A { T < t } = 2 P r A { X t / ∈ D } . (4.60)

roof. 

 r A { T < t } = P r A { T < t, X t / ∈ D } + P r A { T < t, X t ∈ D } . (4.61)

owever, if X t 	∈ D then of course T < t . 

Thus, 

 r A { T < t, X t / ∈ D } = P r A { X t / ∈ D } . (4.62)

n the other hand, if we set 

˜ 
 t = 

{ 

X t , if t ≤ T 
ˆ X t , if t > T , 

hen by the strong Markov property of X t 

 r A { T < t, X t ∈ D } = P r A 
{

T < t, ˜ X t ∈ D 

}
, 

ut if ˜ X t ∈ D then X t 	∈ D . Hence, 

 r A { T < t, X t ∈ D } = P r A { T < t, X t / ∈ D } , 
r 

 r A { T < t, X t ∈ D } = P r A { X t / ∈ D } . (4.63)

herefore from (4.61) –(4.63) we obtain that 

 r A { T < t } = 2 P r A { X t / ∈ D } . 
�

.4.1. Applications of the reflection principle 

The reflection principle can help to calculate the distribution

unctions of certain exit times. 

Let X t be the position of the infected individual at a given time

 starting at the point N (0, 0) in spherical coordinates. If 

 = 

{ 
(θ, ϕ) ∈ S 2 

∣∣θ ∈ [0 , 2 π) , ϕ ∈ 

(
π

2 

, π
] } 

hen 

 r N { X t / ∈ D } = 

∫ π
2 

0 

∫ 2 π

0 

p(t, ϕ) a 2 sin (ϕ) d θd ϕ, 

.e. 

 r N { X t / ∈ D } = 2 πa 2 
∫ π

2 

0 

p(t, ϕ) sin (ϕ ) dϕ , 
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here p ( t , ϕ) is the transition density function of the Brownian

otion on S 2 of radius a . Hence from (4.26) 

 r N { X t / ∈ D } = 2 πa 2 
∫ π

2 

0 

1 

4 πa 2 
sin ϕ 

∑ 

n ∈ N 
(2 n + 1) exp 

(
−n (n + 1) 

√

a 

r 

 r N { X t / ∈ D } = 

1 

2 

+ 

1 

2 

∑ 

n ∈ N ∗
(2 n + 1) exp 

(
−n (n + 1) 

√ 

t 

a 

)∫ π
2 

0 

P 0 n ( co

owever for every n ∈ N 

∗

 n = 

∫ π
2 

0 

P 0 n ( cos ϕ ) sin (ϕ ) d ϕ = 

∫ 1 

0 

P 0 n (x ) d x. 

t is known that (see [106] ) 

 

0 
n (x ) = 

1 

2 n + 1 

d 

dx 

[
P 0 n +1 ( x ) − P 0 n −1 (x ) 

]
. 

owever, P 0 n (1) = 1 for every n ∈ R . Thus 

 n = 

1 

2 n + 1 

(
P 0 n +1 (1) − P 0 n −1 (1) − P 0 n +1 (0) + P 0 n −1 (0) 

)
, 

r 

 n = 

1 

2 n + 1 

(
P 0 n −1 (0) − P 0 n +1 (0) 

)
. 

t is also known that for every n ∈ N 

∗

 

0 
2 n (0) = (−1) n 

(2 n )! 

2 

2 n (n !) 2 
and P 0 2 n +1 (0) = 0 . 

hus, if n is even then I n = 0 . If n is odd, i.e. n = 2 k + 1 , then 

 n = 

1 

4 k + 3 

(
P 0 2 k (0) − P 0 2(k +1) (0) 

)
, 

.e. 

 n = 

(−1) n (2 k )! 

(k + 1)(k !) 2 2 

2 k +1 
. (4.65) 

rom (4.64) and (4.65) we get that 

 r N { X t / ∈ D } = 

1 

2 

+ 

1 

2 

∑ 

n ∈ N 
(−1) n exp 

(
− (2 n + 1)(2 n + 2) 

√ 

t 

a 

)

× (2 n )!(4 n + 3) 

2 

2 n +1 (n !) 2 (n + 1) 
. (4.66) 

urthermore, if S (0, π ) namely the South Pole of S 2 , then 

 r S { X t / ∈ D } = P r N { ̂  X t / ∈ D } = P r N { X t ∈ D } = 1 − P r N { X t / ∈ D } . 
herefore 

 r S { X t / ∈ D } = 

1 

2 

− 1 

2 

∑ 

n ∈ N 
(−1) n exp 

(
− (2 n + 1)(2 n + 2) 

√ 

t 

a 

)

× (2 n )!(4 n + 3) 

2 

2 n +1 (n !) 2 (n + 1) 
. (4.67) 

y using Theorem 3.2 , if T = inf { t > 0 | X t / ∈ D } , then 

 r S { T < t} = 1 −
∑ 

n ∈ N 
(−1) n exp 

(
− (2 n + 1)(2 n + 2) 

√ 

t 

a 

)

× (2 n )!(2 n + 3) 

2 

2 n +1 (n !) 2 (n + 1) 
. (4.68) 

.5. Local time estimation 

efinition 4.11. Let ϕ1 ∈ [0, π ]. We set 

 1 = { (θ1 , . . . , θn −1 , ϕ) ‖ θ1 ∈ [0 , 2 π) , θi ∈ [0 , π ] for 

i = 2 , . . . , n − 1 and ϕ ∈ (0 , ϕ 1 ] } , 
s a subset of S 2 . The reflected Brownian motion in D 1 is the diffu-

ion Y t whose generator is 
n in D 1 with Neuman boundary con-

ition at ∂D . 
1 
 

0 
n ( cos ϕ ) dϕ , 

in (ϕ ) dϕ . (4.64)

Roughly speaking Y t behaves like X t inside D 1 but when it

eaches the boundary, it is reflected back in D 1 . 

efinition 4.12. Let a fixed open set D ⊂ S n with C 3 −boundary ∂D .

f Y t is the reflected Brownian motion in D , and D δ the domain 

 δ = { x ∈ D : d(x, ∂D ) < δ} , 
e define the boundary local time L t of Y t , as 

 t := lim 

δ→ 0 + 

1 

2 δ

∫ t 

0 

1 D δ (Y s ) ds. 

t can be shown that the limit exist in the L 2 sense. 

.5.1. Boundary local time until first hitting 

roposition 4.8. Let ϕ 0 , ϕ 1 ∈ (0, π ), such that ϕ 0 < ϕ 1 , both fixed.

e consider the sets D , �0 in S 2 , such that 

 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ (ϕ 0 , ϕ 1 ) } . 
nd 

0 = { (θ, ϕ 0 ) | θ ∈ [0 , 2 π) } . 
et Y t be the reflected Brownian motion in �0 starting at the point 

 = (θ, ϕ) ∈ D 

f 

 = inf { t ≥ 0 | X t ∈ �0 } 
nd L t is the boundary local time of Y t , then, 

 

A [ exp ( λL T ) ] = 

1 
sin ϕ 1 

− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( ϕ 2 ) 

)
1 

sin ϕ 1 
− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) , if λ < 

1 

sin (ϕ 1 ) ln 
(

tan ( 
ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

)
(4.69) 

nd 

 

A [ exp ( λL T ) ] = + ∞ , if λ ≥ 1 

sin (ϕ 1 ) ln 
(

tan ( 
ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) . (4.70)

roof. It is known that the function 

(θ, ϕ) = E A [ exp ( λL T ) ] 

atisfies the differential equation 

2 z = 0 

ith boundary condition 

(θ, ϕ 0 ) = 1 

nd 

∂z 

∂ϕ 

(θ, ϕ 1 ) + λz(θ, ϕ 1 ) = 0 . 

s long as the function z is positive (see [107] ). Here 
2 is the

aplace-Beltrami operator on S 2 . By the symmetry of D it follows

hat E A [ exp ( λL T ) ] is independent of θ . From (4.2) the differential

quation takes the form 

ot (ϕ) 
dz 

dϕ 

+ 

d 2 z 

d 2 ϕ 

= 0 . (4.71)
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We have shown that the solution of (4.71) is 

z(ϕ) = c 1 

∫ ϕ 

ϕ 0 

1 

sin x 
dx + c 2 , c 1 , c 2 ∈ R . 

However, 

z(θ, ϕ 0 ) = 1 

and 

− ∂z 

∂ϕ 

(θ, ϕ 1 ) + λz(θ, ϕ 1 ) = 0 . 

Hence 

c 1 = 

λ

( sin ϕ 1 ) −1 − λ
∫ ϕ 1 
ϕ 0 

( sin x ) −1 dx 

and 

c 2 = 1 . 

Thus 

z(ϕ) = 

( sin ϕ 1 ) 
−1 − λ

∫ ϕ 1 
ϕ ( sin x ) −1 dx 

( sin ϕ 1 ) −1 − λ
∫ ϕ 1 
ϕ 0 

( sin x ) −1 dx 
. 

However, 

z(ϕ) > 0 if and only if λ < 

( sin ϕ 1 ) 
−1 ∫ ϕ 1 

ϕ 0 
( sin x ) −1 dx 

. 

Therefore, 

E A [ exp ( λL T ) ] = 

( sin ϕ 1 ) 
−1 − λ

∫ ϕ 1 
ϕ ( sin x ) −1 dx 

( sin ϕ 1 ) −1 − λ
∫ ϕ 1 
ϕ 0 

( sin x ) −1 dx 
, 

if λ < 

( sin ϕ 1 ) 
−1 ∫ ϕ 1 

ϕ 0 
( sin x ) −1 dx 

and 

E A [ exp ( λL T ) ] = + ∞ , if λ ≥ ( sin ϕ 1 ) 
−1 ∫ ϕ 1 

ϕ 0 
( sin x ) −1 dx 

i.e 

E A [ exp ( λL T ) ] = 

1 
sin ϕ 1 

− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( ϕ 2 ) 

)
1 

sin ϕ 1 
− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) , 

if λ < 

1 

sin (ϕ 1 ) ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

)
and 

E A [ exp ( λL T ) ] = + ∞ , if λ ≥ 1 

sin (ϕ 1 ) ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) . 

�

5. Discussion and conclusions 

A worldwide multilevel interplay among a plethora of fac-

tors ranging from micro-pathogens and individual interactions to

macro-scale environmental, socio-economic and demographic con-

ditions, necessitate the development of highly sophisticated math-

ematical models for robust representation of contagious dynamics

of infectious diseases that would lead to the establishment of ef-

fective control strategies and prevention policies. 

Ethical and practical reasons defer from conducting enormous

experiments in public health systems, hence mathematical models

appear to be an efficient way to explore contagion dynamics. A key

aspect of epidemiological models is their link to real data, which is
f particular utility toward the design of vaccination policies. Two

ajor vaccination strategies exist currently, i.e., the mass vaccina-

ion, which is most applied, and the recently developed pulse vac-

ination which is used in an increasing number of countries. How-

ver, most vaccination strategies are imperfect in the sense that

hey decrease the number of cases, without however eradicating

he disease. 

Public-health organizations in the world use the epidemiolog-

cal models that fall in the three categories already presented in

his work, to evaluate disease outbreak policies for epidemics. As

e pointed out, many shortcomings exist for those models. All

he models already used in the literature assume that the host

opulation has constant size. However, this excludes diseases in

xponentially growing populations as in most developing coun-

ries, or disease-induced mortality as childhood diseases in de-

eloping countries e.g., malaria. Modeling infectious dynamics in

on-stationary host populations requires explicit modeling of the

ost population as well as of the disease per se. Models some-

imes can be highly complicated in order to improve best fit to

eal data. Nonetheless, very complex models do not always per-

orm optimally in real-world applications or in simulations. Real-

orld models allow for swift decision making, and suitable quan-

ification of the spatiotemporal dynamics of an outbreak. Multidis-

iplinary research efforts are speeding up, integrating the advances

n epidemiology, molecular biology, computational science and ap-

lied mathematics. Mathematical modeling allows better under-

tanding of the transmission process of infectious diseases in space

nd time, by setting forth rigorously the proper assumptions, the

ariables, the equations and their parameters. 

Due to the complexity of the underlying complex interactions,

ither deterministic or stochastic epidemiological models are built

pon incomplete information about e.g., the basic reproduction

umber, threshold effects, intensity of spread, precise data of in-

ected versus susceptible individuals, and other inaccuracies re-

arding the entire infectious network. Simulations or brute-force

omputational techniques have been implemented in that direc-

ion to provide approximate solutions with encouraging results.

evertheless, some of the underlying generating processes of the

utbreaks, such as the virus pathogenicity or variant social net-

ork topologies, ethnological characteristics and other quantities,

ay influence the spread of an outbreak. Simulations often prove

o be inefficient for the systematic analysis of an emergent epi-

emic. New rigorous mathematical modeling methodologies, such

s the one presented in this work for the first time, can be used

o address inherent incomplete data structure and hidden nonlin-

ar complex dynamics, with an aim to enhance forecastability in

ombating epidemic outbreaks. 

In the present study we introduced a novel approach for

urveillance and modeling of infectious disease dynamics, called

BDiEM. We explicitly described the mathematical framework un-

erpinning the implementation and conceptualization of our new-

ge epidemiological model. Our goal is to contribute to the arsenal

f models already developed so far. It can be of particular inter-

st, in light of a recent intensive worldwide effort to speed up the

stablishment of a global surveillance network for combating pan-

emics of emergent and re-emergent infectious diseases. Toward

his aim, mathematical modeling will play a major role in assess-

ng, controlling and forecasting potential outbreaks. We have to

etter understand and model the impact of numerous variables on

ontagious dynamics, ranging from the microscopic host–pathogen

evel, to individual and population interactions, as well as macro-

copic environmental, social, economic and demographic factors all

ver the world. 

As a path for future research, we intend to conduct simula-

ions, and empirical analyses based on real-time spatiotemporal

atasets, in case of past outbreaks of infectious diseases as well as
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or COVID-19. Furthermore, we plan to convey an extensive com-

arative evaluation investigation of SBDiEM vis-à-vis the three ma-

or categories set forth by the taxonomy of Siettos and Russo [58] ,

nd more specifically versus (1) statistical methods for epidemic

urveillance, (2) state-space models of epidemic spread and (3)

achine learning methods. In this way, the forecasting and now-

asting capabilities of the new model will be thoroughly explored.

e also intend to investigate embedding the proposed analytical

odel into integrated artificial intelligence systems in the near fu-

ure. 

Our novel methodology apart from offering a much better un-

erstanding of the complex and heterogeneous infectious disease

ynamics could enhance predictability of epidemic outbreaks as

ell as have potentially important implications for national health

ystems, stakeholders and international policy makers. 
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Abstract

For the plain Pólya urn with two colors, black and white, we prove a functional central limit theo-

rem for the number of white balls assuming that the initial number of black balls is large. Depending

on the initial number of white balls, the limit is either a pure birth process or a diffusion. We also

prove analogous results for the q-Pólya urn, which is an urn where, when picking a ball, the balls of

one color have priority over those of the other.

1 Introduction and results

1.1 The models

The Pólya urn. This is the model where in an urn that has initially r white and s black balls we

draw, successively, uniformly, and at random, a ball from it and then we return the ball back together

with k balls of the same color as the one drawn. The number k ∈ N+ is fixed. Call An and Bn the

number of white and black balls respectively after n drawings. The most notable result regarding its

asymptotic behavior is that the proportion of white balls in the urn after n drawings, An/(An + Bn),

converges almost surely as n → ∞ to a random variable with distribution Beta(r/k, s/k). Our aim in this

work is to examine whether the entire path (An)n≥0 after appropriate natural transformations converges

to a stochastic process.

Standard references for the theory and the applications of Pólya urn and related models are [11] and

[14].

The q-Pólya urn. This is a q-analog of the Pólya urn (see [7], [12] for more on q-analogs) introduced

in [13] and studied further in [3] (see also [4]). A q-analog of a mathematical object A is another object

A(q) so that when q → 1, A(q) “tends” to A. Take q ∈ (0,∞)\{1}. The q-analog of any x ∈ C is defined

as

[x]q :=
qx − 1

q − 1
. (1.1)

Note that limq→1[x]q = x. Now consider an urn that has initially r white and s black balls, where

r, s ∈ N, r+ s > 0. We perform a sequence of additions of balls in the urn according to the following rule.

If at a given time the urn contains w white and b black balls (w, b ∈ N, w + b > 0), then we add k white

balls with probability

Pq(white) =
[w]q

[w + b]q
. (1.2)
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Otherwise, we add k black balls, and this has probability

Pq(black) = 1−Pq(white) = qw
[b]q

[w + b]q
. (1.3)

To understand how the q-Pólya urn works, it helps to realize the probabilities Pq(white),Pq(black)

through a natural experiment.

If q ∈ (0, 1), then we put the balls in a line with the w white coming first and the b black following.

To pick a ball, we go through the line, starting from the beginning and picking each ball with probability

1− q independently of what happened with the previous balls. If we finish the line without picking a ball,

we start from the beginning. Once we pick a ball, we return it to its position together with k balls of the

same color. Given these rules, the probability of picking a white ball is

(1− qw)

∞
∑

j=0

(qw+b)j =
1− qw

1− qw+b
=

[w]q
[w + b]q

, (1.4)

which is (1.2), because before picking a white ball, we will go through the entire list a random number of

times, say j, without picking any ball and then, going through the white balls, we pick one (probability

1− qw).

If q > 1, we place in the line first the black balls and we go through the list picking each ball with

probability 1− q−1. According to the above computation, the probability of picking a black ball is

[b]q−1

[w + b]q−1

= qw
[b]q

[w + b]q
,

which is (1.3).

We extend the notion of drawing a ball from a q-Pólya urn to the case where exactly one of w, b is

infinity. Then the probability to pick a white (resp. black) ball is determined again by (1.2) (resp. (1.3)),

where this is understood as the limit of the right hand side as w or b goes to ∞. For example, assuming

that w = ∞ and b ∈ N, we have Pq(white) = 1 if q < 1 and Pq(white) = q−b if q > 1. Again these

probabilities are realized through the experiment described above. Thus, we can run the process even if

we start with an infinite number of balls from one color and finite from the other.

1.2 Pólya urn. Scaling limits

For the results of this section, we consider an urn whose initial composition depends on m ∈ N+. It is

A
(m)
0 and B

(m)
0 white and black balls respectively. After n drawings, the composition is A

(m)
n , B

(m)
n .

To see a new process arising out of the path of (A
(m)
n )n≥0 we start with an initial number of balls

that tends to infinity as m → ∞. We assume then that B
(m)
0 grows linearly with m. Regarding A

(m)
0 , we

study three regimes:

a) A
(m)
0 stays fixed with m.

b) A
(m)
0 grows to infinity but sublinearly with m.

c) A
(m)
0 grows linearly with m.

The regime where A
(m)
0 grows superlinearly with m follows by regime b) by changing the roles of the

two colors.

In the regimes a) and b), the scarcity of white balls has as a result that the time between two

consecutive drawings of a white ball is of order m/A
(m)
0 (the probability of picking a white ball in the

first few drawings is approximately A
(m)
0 /m, which is small). We expect then that speeding up time by

this factor we will see a birth process. And indeed this is the case as our first two theorems show.

2



All processes appearing in this work with index set [0,∞) and values in some Euclidean space Rd are

elements of DRd [0,∞), the space of functions f : [0,∞) → Rd that are right continuous and have limits

from the left of each point of [0,∞). This space is endowed with the Skorokhod topology, and convergence

in distribution of processes with values on that space is defined through that topology.

We remind the reader that the negative binomial distribution with parameters ν ∈ (0,∞) and p ∈ (0, 1)

is the distribution with support in N and probability mass function

f(x) =

(

x+ ν − 1

x

)

pν(1− p)x (1.5)

for all x ∈ N. When ν ∈ N+, this is the distribution of the number of failures until we see the ν-th success

in a sequence of independent trials, each having probability of success p. For a random variable X with

this distribution, we write X ∼ NB(ν, p).

Theorem 1.1. Fix w0 ∈ N+ and b0 ≥ 0. If A
(m)
0 = w0 and limm→∞ B

(m)
0 /m = b0, then the process

(k−1{A(m)
[mt] − A

(m)
0 })t≥0 converges in distribution, as m → ∞, to an inhomogeneous in time pure birth

process Z = (Zt)t≥0 such that for all 0 ≤ t1 < t2, j ∈ N, the random variable Z(t2) − Z(t1)|Z(t1) = j

has distribution NB
(

w0

k + j, t1+(b0/k)
t2+(b0/k)

)

. Equivalently, Z has rates λt,j = (kj + w0)/(kt + b0) for all

(t, j) ∈ [0,∞)× N.

Theorem 1.2. If A
(m)
0 =: gm with gm → ∞, gm = o(m) and limm→∞ B

(m)
0 /m = b0 with b0 > 0 constant,

then the process (k−1{A(m)
[tm/gm] −A

(m)
0 })t≥0, as m → ∞, converges in distribution to the Poisson process

on [0,∞) with rate 1/b0.

Next, we look at regime c), i.e., in the case that at time 0 both black and white balls are of order

m. In this case, the normalized process of the number of white balls has a non-random limit, which we

determine, and then we study the fluctuations of the process around this limit.

Theorem 1.3. Assume that A
(m)
0 , B

(m)
0 are such that limm→∞

A
(m)
0

m = a,
B

(m)
0

m = b where a, b ∈ [0,∞) are

not both zero. Then the process (A
(m)
[mt]/m)t≥0, as m → ∞, converges in distribution to the deterministic

process Xt =
a

a+b (a+ b+ kt), t ≥ 0.

The limit X is the same as in an urn in which we add at each step k white or black balls with

corresponding probabilities a/(a+ b), b/(a+ b), that is, irrespective of the composition of the urn at that

time.

To determine the fluctuations of the process (A
(m)
[mt]/m)t≥0 around its m → ∞ limit, X , we let

C
(m)
t =

√
m

(

A
(m)
[mt]

m
−Xt

)

for all m ∈ N+ and t ≥ 0.

Theorem 1.4. Let a, b ∈ [0,∞), not both zero, θ1, θ2 ∈ R, and assume that A
(m)
0 := [am+θ1

√
m], B

(m)
0 =

[bm + θ2
√
m] for all large m ∈ N. Then the process (C

(m)
t )t≥0 converges in distribution, as m → ∞, to

the unique strong solution of the stochastic differential equation

Y0 = θ1, (1.6)

dYt =
k

a+ b+ kt

{

Yt −
a

a+ b
(θ1 + θ2)

}

dt+ k

√
ab

a+ b
dWt, (1.7)

which is

Yt = θ1 +
bθ1 − aθ2
(a+ b)2

kt+ k

√
ab

a+ b
(a+ b+ kt)

∫ t

0

1

a+ b+ ks
dWs. (1.8)

W is a standard Brownian motion
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Remark. Functional central limit theorems for Pólya type urns have been proven with increasing gener-

ality in the works [8], [2], [10]. The major difference with our results is that in theirs, the initial number

of balls, A
(m)
0 , B

(m)
0 , is fixed. More specifically:

1) Gouet ([8]) studies urns with two colors (black and white) in the setting of Bagchi and Pal ([1]).

According to that, when a white ball is drawn, we return it in the urn together with a white and b black

balls, while if a black ball is drawn, we return it together with c white and d black. The numbers a, b, c, d

are fixed integers (possibly negative), the number of balls added to the urn is fixed (that is a+ b = c+ d),

and balls are drawn uniformly form the urn. The plain Pólya urn is not studied in that work because,

according to the author, it has been studied by Heyde in [9]. However, for the Pólya urn, [9] discusses

the central limit theorem and the law of the iterated logarithm. In any case, following the techniques of

Heyde and Gouet one can prove the following. Assume for simplicity that k = 1 and let L =: limn→∞
An

n .

The limit exists with probability one because of the martingale convergence theorem. Then
{√

n

(

t
An/t

n
− L

)}

t≥0

d→ {WL′(1−L′)t}t≥0

as n → ∞. W is a standard Brownian motion and L′ is a random variable independent of W and

having the same distribution as L. On the other hand, de-Finetti’s theorem gives easily the more or less

equivalent statement that, as n → ∞,
{√

n

(

Ant

nt
− L

)}

t≥0

d→ {WL′(1−L′)/t}t≥0

with W,L′ as before.

2) Bai, Hu, and Zhang ([2]) work again in the setting of Bagchi and Pal, but now the numbers a, b, c, d

depend on the order of the drawing and are random. The requirement that each time we add the same

number of balls is relaxed.

3) Janson ([10]) considers urns with many colors, labeled 1, 2, . . . , l, where after each drawing, if we

pick a ball of color i, we place in the urn balls of every color according to a random vector (ξi,1, . . . , ξi,l)

whose distribution depends on i (ξi,j is the number of balls of color j that we add in the urn). Also, each

ball is assigned a certain nonrandom activity that depends only on its color, and then the probability to

pick a certain color at a drawing equals the ratio of the total of the activities of all balls of that color to

the total of the activities of all balls present in the urn at that time. A restriction in that work is that

there is a color i0 so that starting the urn with just one ball and this ball has this color, there is positive

probability to see in the future every other color. This excludes the classical Pólya urn that we study.

1.3 q-Pólya urn. Basic results

We recall some notation from q-calculus (see [4], [12]). For q ∈ (0,∞)\{1}, x ∈ C, k ∈ N+, we define

[x]q :=
qx − 1

q − 1
the q-number of x, (1.9)

[k]q! := [k]q[k − 1]q · · · [1]q the q-factorial, (1.10)

[x]k,q := [x]q[x− 1]q · · · [x− k + 1]q the q-factorial of order k, (1.11)
[

x

k

]

q

:=
[x]k,q
[k]q!

the q-binomial coefficient (1.12)

(x; q)∞ :=

∞
∏

i=0

(1− xqi) when q ∈ [0, 1) the q-Pochhammer symbol, (1.13)

We extend these definitions in the case k = 0 by letting [0]q! = 1, [x]0,q = 1.

Now consider a q-Pólya urn that has initially r white and s black balls, where r ∈ N∪{∞} and s ∈ N.

Call Xn the number of drawings that give white ball in the first n drawings. Its distribution is specified

by the following.
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Fact 1: Let a := r/k and b := s/k.

(i) If r ∈ N, then the probability mass function of Xn is

P (Xn = x) = qk(n−x)(a+x)

[−a
x

]

q−k

[ −b
n−x

]

q−k

[−a−b
n

]

q−k

= q−sx

[

a+x−1
x

]

q−k

[

b+n−x−1
n−x

]

q−k

[

a+b+n−1
n

]

q−k

(1.14)

= q−kx(b+n−x)

[−a
x

]

qk

[ −b
n−x

]

qk
[−a−b

n

]

qk

(1.15)

for all x ∈ N.

(ii) If r = ∞ and q > 1, then the probability mass function of Xn is

P (Xn = x) = q−sx(1− q−k)n−x

[

b+ n− x− 1

n− x

]

q−k

[n]q−k !

[x]q−k !
(1.16)

for all x ∈ N.

Relation (1.14) is (3.1) in [3] where it is proved through recursion. In Section 2 we give an alternative

proof.

According to the experiment described in Section 1.1, the balls that are placed first in the line have

an advantage to be picked (the white if q ∈ (0, 1), the black if q > 1). In fact, this leads to the extinction

of drawings from the balls of the other color; there is a point after which the number of balls in the urn

of that color stays fixed to a random number. In the next theorem, we identify the distribution of this

number. We treat the case q > 1.

Theorem 1.5 (Extinction of the second color). Assume that q > 1, r ∈ N ∪ {∞}, s ∈ N. As n → ∞,

with probability one, (Xn)n≥1 converges to a random variable X with values in N and probability mass

function

(i)

f(x) = q−sx

[ r
k + x− 1

x

]

q−k

(q−s; q−k)∞
(q−r−s; q−k)∞

(1.17)

for all x ∈ N in the case r ∈ N and

(ii)

f(x) =

(

q−s

1− q−k

)x
1

[x]q−k !
(q−s; q−k)∞ (1.18)

for all x ∈ N in the case r = ∞.

When r ∈ N and k|r, X has the negative q-binomial distribution of the second kind with parameters

r/k, q−s, q−k (see §3.1 in [4] for its definition). When r = ∞, X has the Euler distribution with parameters

q−s/(1− q−k), q−k (see §3.3 in [4] again).

1.4 q-Pólya urn. Scaling limits

As in Section 1.2, we consider an urn whose composition after n drawings is A
(m)
n white and B

(m)
n black

balls. m ∈ N+ is a parameter. Our objective is to find limits of the entire path of the process (A
(m)
n )n∈N

analogous to the ones of Section 1.2 for the Pólya urn. Assume that q > 1.

If we keep q fixed, nothing new appears because: (a) If A
(m)
0 , B

(m)
0 are fixed for all m, then after some

point we pick only black balls (Theorem 1.5(i)). (b) If limm→∞ B
(m)
0 = ∞ then the process converges to

the one where we pick only black balls. (c) If B
(m)
0 is fixed for all m and limm→∞ A

(m)
0 = ∞ then the

process converges to the one where r = ∞ and again, after some point, we pick only black balls (Theorem

1.5(ii)).

Interesting limits appear once we take q = qm to depend on m and approach 1 as m → ∞. We study

two regimes for qm. In the first, the distance of qm from 1 is Θ(1/m) while in the second, the distance is

o(1/m).
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1.4.1 The regime q = 1 + Θ(m−1)

Assume that qm = c1/m with c > 1.

Theorem 1.6. Fix w0 ∈ N+ and b0 ≥ 0. If A
(m)
0 = w0 and limm→∞ B

(m)
0 /m = b0, then the process

(k−1(A
(m)
[mt]−A

(m)
0 ))t≥0 converges in distribution as m → ∞ to an inhomogeneous in time pure birth process

Z with starting value 0 and such that for all 0 ≤ t1 < t2, j ∈ N, the random variable Z(t2)−Z(t1)|Z(t1) = j

has distribution NB
(

w0

k + j, 1−c−b0−kt1

1−c−b0−kt1

)

. Equivalently, Z has rates

λt,j =
w0 + jk

cb0+kt − 1
log c (1.19)

for all (t, j) ∈ [0,∞)× N.

Theorem 1.7. Assume that A
(m)
0 = gm and limm→∞ B

(m)
0 /m = b0, where b0 ∈ (0,∞) and gm ∈

N+, gm → ∞, gm = o(m) as m → ∞. Then the process (k−1(A
(m)
[tm/gm] − A

(m)
0 ))t≥0 converges in distribu-

tion, as m → ∞, to the Poisson process on [0,∞) with rate

log c

cb0 − 1
. (1.20)

Theorem 1.8. Assume that A
(m)
0 , B

(m)
0 are such that limm→∞ A

(m)
0 /m = a, limm→∞ B

(m)
0 /m = b, where

a, b ∈ [0,∞) are not both zero. Then the process
(

A[mt]/m
)

t
≥ 0 converges in distribution, as m → +∞,

to the unique solution of the differential equation

X̂0 = a, (1.21)

dX̂t = k
1− cX̂t

1− ca+b+kt
dt, (1.22)

which is

X̂t := a− 1

log c
log

(

cb − 1 + c−kt(1 − c−a)

cb − c−a

)

. (1.23)

As for the Pólya urn, we determine the fluctuations of the process (A
(m)
[mt]/m)t≥0 around its m → ∞

limit, X̂. Let

Ĉ
(m)
t =

√
m

(

A
(m)
[mt]

m
− X̂t

)

for all m ∈ N+ and t ≥ 0.

Theorem 1.9. Let a, b ∈ [0,∞), not both zero, θ1, θ2 ∈ R, and assume that A
(m)
0 := [am+θ1

√
m], B

(m)
0 =

[bm + θ2
√
m] for all large m ∈ N. Then the process (Ĉ

(m)
t )t≥0 converges in distribution, as m → ∞, to

the unique solution of the stochastic differential equation

Ŷ0 = θ1,

dŶt =
k log c

ca+b+kt − 1

{

(ca+b − 1)Ŷt − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kt(1 − c−a)

}

dt

+ k
√

(ca − 1)(cb − 1)
c(a+kt)/2

ca+b+kt − ca+kt + ca − 1
dWt,

(1.24)

which is

Ŷt =
ca+b+kt − 1

ca+b+kt − ca+kt + ca − 1

(

θ1 − (θ1 + θ2)
ca+b(ca − 1)

ca+b − 1

ckt − 1

ca+b+kt − 1

+ k
√

(ca − 1)(cb − 1)

∫ t

0

c(a+kt)/2

ca+b+kt − 1
dWs

)

.

(1.25)

W is a standard Brownian motion
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1.4.2 The regime q = 1 + o(m−1)

In this regime, we let q = q(m) := cεm/m where c > 1 and εm → 0+ as m → ∞. With computations

analogous to those of the results of the previous subsection, it is easy to see that Theorems 1.1, 1.2 , 1.3,

1.4 hold exactly the same for the q-Pólya urn in this regime.

1.5 q-Pólya urn with many colors

In this paragraph, we give a q-analog for the Pólya urn with more than two colors. The way to do the

generalization is inspired by the experiment we used in order to explain relation (1.2).

Let l ∈ N, l ≥ 2, and q ∈ (0, 1). Assume that we have an urn containing wi balls of color i for each

i ∈ {1, 2, . . . , l}. To draw a ball from the urn, we do the following. We order the balls in a line, first those

of color 1, then those of color 2, and so on. Then we visit the balls, one after the other, in the order that

they have been placed, and we select each with probability 1 − q independently of what happened with

the previous balls. If we go through all balls without picking any, we repeat the same procedure starting

from the beginning of the line. Once a ball is selected, the drawing is completed. We return the ball to

its position together with another k of the same color. For each i = 0, 1, . . . , l, let si =
∑

1≤j≤i wj . Notice

that sl is the total number of balls in the urn. Then, working as for (1.4), we see that

P(color i is drawn) = qsi−1
1− qwi

1− qsl
=

qsi−1 − qsi

1− qsl
= qsi−1

[wi]q
[sl]q

. (1.26)

Call pi the number in the last display for all i = 1, 2, . . . , l. Note that when q → 1, pi converges

to wi/sl, which is the probability for the usual Pólya urn with l colors. It is clear that for any given

q ∈ (0,∞)\{1}, the numbers p1, p2, . . . , pl are non-negative and add to 1 (the second fraction in (1.26)

shows this). We define then for this q the q-Pólya urn with colors 1, 2, . . . , l to be the sequential procedure

in which, at each step, we add k balls of a color picked randomly among {1, 2, . . . , l} so that the probability
that this color is i is pi .

When q > 1, these probabilities come out of the experiment described above but in which we place

the balls in reverse order (that is, first those of color l, then those of color l − 1, and so on) and we go

through the list selecting each ball with probability 1− q−1. It is then easy to see that the probability to

pick a ball of color i is pi.

Theorem 1.10. Assume that q ∈ (0, 1) and that we start with a1, a2, . . . , al balls from colors 1, 2, . . . , l

respectively, where a1, a2, . . . , al ∈ N are not all zero. Call Xn,i the number of times in the first n drawings

that we picked color i. The probability mass function for the vector (Xn,2, Xn,3, . . . , Xn,l) is

P (Xn,2 = x2, . . . , Xn,l = xl) = q
∑l

i=2 xi
∑i−1

j=1(aj+kxj)

∏l
i=1

[− ai
k

xi

]

q−k

[− a1+a2...+al
k

n

]

q−k

(1.27)

=

[

n

x1, x2, . . . , xl

]

q−k

q
∑l

i=2 xi
∑i−1

j=1(aj+kxj)
∏l

i=1

[

−ai

k

]

xi,q−k

[

−a1+a2+...+al

k

]

n,q−k

(1.28)

for all x2, . . . , xl ∈ {0, 1, 2, . . . , n} with x2 + · + xl ≤ n, where x1 := n −∑l
i=2 x2 and

[

n
x1,x2,...,xl

]

q−k
:=

[n]
q−k !

[x1]q−k !·...·[xl]q−k !
is the q-multinomial coefficient.

It follows from Theorem 1.5 that when q ∈ (0, 1), after some random time, we will be picking only balls

of color 1. So that the number of times that we pick each of the other colors 2, 3, . . . , l, say X2, X3, . . . , Xn

are finite. We determine the joint distribution of these numbers.

Theorem 1.11. Under the assumptions of Theorem 1.10, as n → +∞, with probability one, the vector

(Xn,2, Xn,3, . . . , Xn,l) converges to a random vector (X2, X3, . . . , Xl) with values in Nl−1 and probability
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mass function

f (x2, x3, . . . , xl) = q
∑l

i=2 xi
∑i−1

j=1 aj

l
∏

i=2

[

xi +
ai

k − 1

xi

]

qk

(qa1 ; qk)∞
(qa1+···+al ; qk)∞

(1.29)

for all x2, . . . , xl ∈ N.

Note that the random variablesX2, . . . , Xl are independent although (Xn,2, Xn,3, . . . , Xn,l) are dependent.

Next, we look for a scaling limit for the path of the process. Assume that c ∈ (0, 1) and qm = c1/m.

Let A
(m)
j,i be the number of balls of color i in this urn after j drawings.

Theorem 1.12. Let m be a positive integer and assume that in the q-Pólya urn with l different colors of

balls it holds 1
m

(

A
(m)
0,1 , A

(m)
0,2 , . . . , A

(m)
0,l

)

m→∞→ (a1, a2, . . . , al), where a1, . . . , al ∈ [0,∞) are not all zero.

Set σ0 = 0 and σi :=
∑

j≤i aj for all i = 1, 2, . . . , l. Then the process
(

1
mA

(m)
[mt],1,

1
mA

(m)
[mt],2, . . . ,

1
mA

(m)
[mt],l

)

t≥0

converges in distribution, as m → +∞, to (Xt,1, Xt,2, . . . , Xt,l)t≥0 with

Xt,i = ai +
1

log c
log

(1− cσl+kt)− cσi−1(1− ckt)

(1 − cσl+kt)− cσi(1− ckt)
(1.30)

for all i = 1, 2, . . . , l.

As in the case of two colors, we study the regime where qm = cǫm/m, with c ∈ (0, 1) and ǫm → 0+.

Theorem 1.13. Let m be a positive integer and assume that in the q-Pólya urn with l different colors of

balls that 1
m

(

A
(m)
0,1 , A

(m)
0,2 , . . . , A

(m)
0,l

)

m→∞→ (a1, a2, . . . , al), where a1, . . . , al ∈ [0,∞) are not all zero. Then

the process
(

1
mA

(m)
[mt],1,

1
mA

(m)
[mt],2, . . . ,

1
mA

(m)
[mt],l

)

t≥0
converges in distribution, as m → +∞, to (Xt)t≥0 with

Xt =

(

1 +
kt

a1 + · · ·+ al

)

(a1, a2, . . . , al) (1.31)

for all t ≥ 0.

Orientation. In Section 2, we prove Fact 1 and Theorem 1.5, which are basic results for the q-Pólya

urn. Section 3 (Section 4) contains the proofs of the theorems for the Pólya and q-Pólya urns that give

convergence to a jump process (to a continuous process). Finally, Section 5 contains the proofs for the

results that refer to the q-Pólya urn with arbitrary, finite number of colors.

2 q-Pólya urn. Prevalence of a single color

In this section, we prove the claims of Section 1.3. Before doing so, we mention three properties of the

q-binomial coefficient. For all q ∈ (0,∞)\{1}, x ∈ C, n, k ∈ N with k ≤ n it holds

[−x]q = −q−x[x]q, (2.1)
[−x

k

]

q

= (−1)kq−k(k+2x−1)/2

[

x+ k − 1

k

]

q

, (2.2)

[

x

k

]

q−1

= q−k(x−k)

[

x

k

]

q

, (2.3)

∑

1≤i1<i2<···<ik≤n

qi1+i2+···+ik = q(
k+1
2 )
[

n

k

]

q

. (2.4)

The first is trivial, the second follows from the first, the third is easily shown, while the last is Theorem

6.1 in [12].
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Proof of Fact 1. (i) The probability to get black balls exactly at the drawings i1 < i2 < · · · < in−x is

g(i1, i2, . . . , in−x) =

∏x−1
j=0 [r + jk]q

∏n−x−1
j=0 [s+ jk]q

∏n−1
j=0 [r + s+ jk]q

q
∑n−x

ν=1 r+(iν−ν)k. (2.5)

To see this, note that, due to (1.2) and (1.3), the required probability would be equal to the above fraction

if in (1.3) the term qw were absent. This term appears whenever we draw a black ball. Now, when we

draw the ν-th black ball, there are r+ (iν − ν)k white balls in the urn, and this explains the exponent of

q in (2.5).

Since [x+ jk]q = 1−qx+jk

1−q = [−x
k − j]q−k [−k]q for all x, j ∈ R, the fraction in (2.5) equals

[−a]x,q−k [−b]n−x,q−k

[−a− b]n,q−k

. (2.6)

Then

∑

1≤i1<i2<···<in−x≤n

q
∑n−x

ν=1 r+(iν−ν)k = q(n−x)r−k(n−x)(n−x+1)/2
∑

1≤i1<i2<···<in−x≤n

(qk)i1+i2+···+in−x (2.7)

= q(n−x)r−k(n−x)(n−x+1)/2qk(
n−x+1

2 )
[

n

x

]

qk
(2.8)

= q(n−x)rqkx(n−x)

[

n

x

]

q−k

= qk(n−x)(a+x)

[

n

x

]

q−k

. (2.9)

The second equality follows from (2.4) and the equality
[

n
x

]

qk
=
[

n
n−x

]

qk
. The third, from (2.3). Thus, the

sum
∑

1≤i1<i2<···<in−x≤n g(i1, i2, . . . , in−x) equals the first expression in (1.14). The second expression in

(1.14) and (1.15) follow by using (2.2) and (2.3) respectively.

(ii) In this scenario, we take r → ∞ in the last expression in (1.14). We will explain shortly why this

gives the probability we want. Since q−k ∈ (0, 1), we have limt→∞[t]q−k = (1− q−k)−1 and thus, for each

ν ∈ N, it holds

lim
t→∞

[

t+ ν − 1

ν

]

q−k

=
1

[ν]q−k !

1

(1− q−k)ν
. (2.10)

Applying this twice in the last expression in (1.14) (there a = r/k → ∞), we get as limit the right hand

side of (1.16).

Now, to justify that passage to the limit r → ∞ in (1.14) gives the required result, we argue as follows.

For clarity, denote the probability Pq(white) when there are w white and b black balls in the urn by

Pw,b
q (white). And when there are r white and s black balls in the urn in the beginning of the procedure,

denote the probability of the event Xn = x by Pr,s(Xn = x). It is clear that the probability Pr,s(Xn = x)

is a continuous function (in fact, a polynomial) of the quantities

Pr+ki,s+kj
q (white) : i = 0, 1, . . . , x− 1, j = 0, 1, . . . , n− x− 1,

for all values of r ∈ N ∪ {∞}, s ∈ N. In P∞,s(Xn = x), each such quantity, P∞,m
q (white), equals

limr→∞ Pr,m(white). Thus, P∞,s(Xn = x) = limr→∞ Pr,s(Xn = x). �

Before proving Theorem 1.5, we give a simple argument that shows that eventually we will be picking

only black balls. That is, the number X := limn→∞ Xn of white balls drawn in an infinite sequence of

drawings is finite. It is enough to show it in the case that r = ∞ and s = 1 since, by the experiment that

realizes the q-Pólya urn, we have (using the notation from the proof of Fact 1 (ii))

Pr,s(X = ∞) ≤ P∞,1(X = ∞).

For each n ∈ N+, call En the event that at the n-th drawing we pick a white ball, Bn the number of

black balls present in the urn after that drawing (also, B0 := 1), and write q̂ := 1/q. Then P(En) =
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E(P(En|Bn−1)) = E(q̂Bn−1). We will show that this decays exponentially with n. Indeed, since at every

drawing there is probability at least 1 − q̂ to pick a black ball, we can construct in the same probability

space the random variables (Bn)n≥1 and (Yi)i≥1 so that the Yi are i.i.d. with Y1 ∼ Bernoulli(1− q̂) and

Bn ≥ 1 + k(Y1 + · · ·+ Yn) for all n ∈ N+. Consequently,

P(En) ≤ E(q̂1+k(Y1+···+Xn−1)) = q̂{E(q̂kY1 )}n−1.

This implies that
∑∞

n=1 P(En) < ∞, and the first Borel-Cantelli lemma gives that P∞,1(X∞ = ∞) = 0.

Proof of Theorem 1.5. Since (Xn)n≥1 is increasing, it converges to a random variable X with values

in N ∪ {∞}. In particular, it converges to this variable in distribution. Our aim is to take the limit as

n → ∞ in the last expression in (1.14) and in (1.16) in order to determine the distribution of X . Note

that for a ∈ R and θ ∈ [0, 1) it is immediate that (recall (1.13) for the notation)

lim
n→∞

[

a+ n

n

]

θ

=
(θa+1; θ)∞
(θ; θ)∞

. (2.11)

(i) Taking n → ∞ in the last expression in (1.14) and using (2.11), we get the required expression, (1.17),

for f . Then relation (2.2) in [3] (or (8.1) in [12]) shows that
∑

x∈N
f(x) = 1, so that it is a probability

mass function of a random variable X with values in N.

(ii) This follows after taking limit in (1.16) and using (2.11) and limn→∞(1− q−k)n[n]q−k ! = (q−k; q−k)∞.

�

3 Jump process limits. Proof of Theorems 1.1, 1.2, 1.6, 1.7

In the case of Theorems 1.1, 1.6, we let gm := 1 for all m ∈ N+, and in all four theorems we let

v := vm := m/gm. Our interest is in the sequence of the processes (Z(m))m≥1 with

Z(m)(t) =
1

k
(A

(m)
[vt] −A

(m)
0 ) (3.1)

for all t ≥ 0.

We apply Theorem 7.8 in [6], that is, we show that the sequence (Z(m))m≥1 is tight and its finite

dimensional distributions converge. Tightness gives that there is a subsequence of this sequence that

converges in distribution to a process Z = (Zt)t≥0 with paths in the space DR[0,∞) of real valued

functions on [0,∞) right continuous with left limits. Then tightness together with convergence of finite

dimensional distributions shows that the whole sequence (Z(m))m≥1 converges in distribution to Z.

Notation: (i) For sequences (an)n∈N, (bn)n∈N with values in R, we will say that they are asymptotically

equivalent, and will write an ∼ bn as n → ∞, if limn→∞ an/bn = 1. We use the same expressions for

functions f, g defined in a neighborhood of ∞ and satisfy limx→∞ f(x)/g(x) = 1.

(ii) For a ∈ C and k ∈ N
+, let

(a)k := a(a− 1) · · · (a− k + 1), (3.2)

a(k) := a(a+ 1) · · · (a+ k − 1), (3.3)

the falling and rising factorial respectively. Also let (a)0 := a(0) := 1.

3.1 Convergence of finite dimensional distributions

Since for each m ≥ 1 the process Z(m) is Markov taking values in N and increasing in time, it is enough

to show that the conditional probability

P(Z(m)(t2) = k2|Z(m)(t1) = k1) (3.4)
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converges as m → ∞ for each 0 ≤ t1 < t2 and nonnegative integers k1 ≤ k2.

Consider first the case of Pólya urn and define

n := [vt2]− [vt1], (3.5)

x := k2 − k1, (3.6)

σ :=
A

(m)
0 + kk1

k
, (3.7)

τ :=
k[vt1]− kk1 +B

(m)
0

k
. (3.8)

Then, the above probability equals

P(A
(m)
[vt2]

= kk2 + w0|A(m)
[vt1]

= kk1 + w0)

=

(

n

x

)

kσ(kσ + k)(kσ + 2k) · · · (kσ + (x− 1)k)kτ(kτ + k)(kτ + 2k) · · · (kτ + (n− x− 1)k)

(kσ + kτ)(kσ + kτ + k)(kσ + kτ + 2k) · · · (kσ + kτ + (n− 1)k)
(3.9)

=
(n)x
x!

σ(x)τ (n−x)

(σ + τ)(n)
=

(n)x
x!

σ(x)Γ (τ + n− x)

Γ (τ)

Γ (σ + τ)

Γ (σ + τ + n)
. (3.10)

To compute the limit as m → ∞ of (3.10), we will use Stirling’s approximation for the Gamma function,

Γ(y) ∼
(y

e

)y
√

2π

y
(3.11)

as y → ∞, and its consequence

Γ(y + a) ∼ Γ(y)ya (3.12)

as y → ∞ for all a ∈ R.

Theorem 1.1. Recall that v = m in this theorem. Using (3.12) twice, with the role of a played by −x

and σ, we see that the last quantity in (3.10), for m → ∞, is asymptotically equivalent to

(m(t2 − t1))
x

x!
σ(x)τσ

(τ + n)
−x

(τ + n)σ
∼ (m(t2 − t1))

x

x!
σ(x) {m(t1 + (b0/k))}σ

{m(t2 + (b0/k))}σ+x

=
(t2 − t1)

x

x!
σ(x) {t1 + (b0/k)}σ

{t2 + (b0/k)}σ+x
=

(

σ + x− 1

x

)(

t2 − t1
t2 + (b0/k)

)x (

1− t2 − t1
t2 + (b0/k)

)σ

.

Thus, as m → ∞, the distribution of {Z(m)(t2) − Z(m)(t1)}|Z(m)(t1) = k1 converges to the negative

binomial distribution with parameters σ, t1+(b0/k)
t2+(b0/k)

[recall (1.5)]. �

Theorem 1.2. Using (3.11), we see that the last quantity in (3.10), for m → ∞, is asymptotically

equivalent to

(m(t2 − t1))
x

x!gxm

gxm
kx

ex
(τ + n− x)τ+n−x

ττ
(σ + τ)σ+τ

(σ + τ + n)σ+τ+n

∼ mx(t2 − t1)
x

x!kx
ex(τ + n− x)−x

(

τ + n− x

σ + τ + n

)n(
σ + τ

σ + τ + n

)σ (
(τ + n− x)(σ + τ)

τ(σ + τ + n)

)τ

∼ mx(t2 − t1)
x

x!kx
exτ−xe−(t2−t1)/b0e−(t2−t1)/b0e−x+(t2−t1)/b0 ∼ 1

x!

(

t2 − t1
b0

)x

e−(t2−t1)/b0 .

Here it was crucial that b0 > 0. Thus, as m → ∞, the distribution of {Z(m)(t2)−Z(m)(t1)}|Z(m)(t1) = k1

converges to the Poisson distribution with parameter (t2 − t1)/b0. �

Now we treat the cases of Theorems 1.6, 1.7, which concern the q-Pólya urn. Define again n, x, σ, τ as in

(3.5)-(3.8), and r := q−k
m = c−k/m. Then, the probability in (3.4), with the help of the last expression in

(1.14), is computed as

rτx
[

σ + x− 1

x

]

r

[

τ+n−x−1
n−x

]

r
[

σ+τ+n−1
n

]

r

= rτx
[

σ + x− 1

x

]

r

(

n
∏

i=n−x+1

(1 − ri)
) 1
∏n−1

i=n−x(1− rτ+i)

[τ + n− 1]n,r
[σ + τ + n− 1]n,r

.

(3.13)
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The last ratio is

n−1
∏

i=0

1− rτ+i

1− rσ+τ+i
=

n−1
∏

i=0

(

1− (1− rσ)rτ
ri

1− rσ+τ+i

)

. (3.14)

Denote by 1− am,i the i-th term of the product. The logarithm of the product equals

− (1− rσ)rτ
n−1
∑

i=0

ri

1− rσ+τ+i
+ o(1) (3.15)

as m → ∞. To justify this, note that 1− rσ ∼ 1
m (A

(m)
0 + kk1) log c and rτ+i/(1− rσ+τ+i) ≤ 1/(1− c−b0)

for all i ∈ N. Thus, for all large m, |am,i| < 1/2 for all i = 0, 1, . . . , n− 1, and the error in approximating

the logarithm of 1−am,i by −am,i is at most |am,i|2 (by Taylor’s expansion, we have | log(1−y)+y| ≤ |y|2
for all y with |y| ≤ 1/2). The sum of all errors is at most nmax0≤i<n |am,i|2, which goes to zero as m → ∞
because 1− rσ ∼ C/n for some appropriate constant C > 0.

We will compute the limit of the right hand side of (3.13) as m → ∞ under the assumptions of

Theorems 1.6, 1.7.

Theorem 1.6. As m → ∞, the first term of the product in (3.13) converges to c−x(b0+kt1). The q-

binomial coefficient converges to
(

k−1w0+k2−1
k2−k1

)

. The third term converges to (1 − c−k(t2−t1))x, while the

denominator of the fourth term converges to (1 − ρ2)
x, where we set ρi := c−b0−kti for i = 1, 2. The

expression preceding o(1) in (3.15) is asymptotically equivalent to

− k

m
σ(log c)ρ1

n−1
∑

i=0

c−ki/m

1− rσ+τ c−ki/m
= −ρ1kσ(log c)

1

m

n−1
∑

i=0

c−ki/m

1− ρ1c−ki/m
+ o(1) (3.16)

= −ρ1kσ log c

∫ t2−t1

0

1

cky − ρ1
dy + o(1) = σ log

1− ρ1
1− ρ2

+ o(1). (3.17)

The equality in the first line is true because limm→∞ rσ+τ = ρ1 and the function x 7→ c−ki/m/(1−xc−ki/m)

has derivative bounded uniformly in i,m when x is confined to a compact subset of [0, 1). Thus, the limit

of (3.13), as m → ∞, is
(

σ + x− 1

x

)(

ρ1 − ρ2
1− ρ2

)x (
1− ρ1
1− ρ2

)σ

, (3.18)

which means that, as m → ∞, the distribution of {Z(m)(t2) − Z(m)(t1)}|Z(m)(t1) = k1 converges to the

negative binomial distribution with parameters σ, (1 − ρ1)/(1− ρ2). �

Theorem 1.7. Now the term rτx converges to c−xb0 , while
[

σ + x− 1

x

]

r

(

n
∏

i=n−x+1

(1− ri)
)

=

∏x−1
i=0 (1 − rσ+i)
∏x

i=1(1− ri)

(

n
∏

i=n−x+1

(1 − ri)
)

(3.19)

∼
∏x−1

i=0 (σ + i)
∏x

i=1 i

((t2 − t1)k log c)
x

gxm
∼ 1

x!
((t2 − t1) log c)

x. (3.20)

The denominator of the fourth term in (3.13) converges to (1 − c−b0)x. The expression in (3.15) is

asymptotically equivalent to

− rτ (1− rσ)

n−1
∑

i=0

ri

1− rσ+τ+i
∼ −c−b0 gm

m
log c

n

1− c−b0
∼ − log c

cb0 − 1
(t2 − t1). (3.21)

In the first ∼, we used the fact that the terms of the sum, as m → ∞, converge uniformly in i to

(1− c−b0)−1. Thus, the limit of (3.13), as m → ∞, is

1

x!

(

log c

cb0 − 1
(t2 − t1)

)x

e
− log c

cb0−1
(t2−t1)

, (3.22)

which means that, as m → ∞, the distribution of {Z(m)(t2) − Z(m)(t1)}|Z(m)(t1) = k1 converges to the

Poisson distribution with parameter t2−t1
cb0−1

log c. �
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For use in the following section, we define

U(t1, t2, k1, x) := lim
m→∞

P(Z(m)(t2) = k1 + x|Z(m)(t1) = k1) (3.23)

for all 0 ≤ t1 ≤ t2, k1 ∈ N, x ∈ N. The results of this section show that U as a function of x ∈ N is a

probability mass function of an appropriate random variable with values in N.

3.2 Tightness

We apply Corollary 7.4 of Chapter 3 in [6]. According to it, it is enough to show that

(i) For each t ≥ 0, it holds limR→∞ limm→∞ P(|Z(m)(t)| ≥ R) = 0.

(ii) For each T, ε > 0, it holds limδ→0 limm→∞ P(w′(Z(m), δ, T ) ≥ ε) = 0.

Here, for any function f : [0,∞) → R, we define

w′(f, δ, T ) := inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

|f(s)− f(t)|,

where the infimum is over all partitions of the form 0 = t0 < t1 < · · · tn−1 < T ≤ tn with ti − ti−1 > δ for

all i = 1, 2, . . . , n.

The first requirement holds because Z(m)(t) converges in distribution as we showed in the previous

subsection. The second requirement, since Z(m) is a jump process with jump sizes only 1, is equivalent to

lim
δ→0+

lim
m→∞

P(There are at least two jump times of Z(m) in [0, T ] with distance ≤ δ) = 0. (3.24)

Call Am,δ the event inside the probability and for j = 1, 2, . . . , [T/δ] define Ij := ((j−1)δ, (j+1)δ]. Then,

for each ℓ ∈ N, the probability P(Am,δ ∩ {Z(m)(T ) ≤ ℓ}) is bounded above by

[T/δ]
∑

j=1

P({Z(m)(T ) ≤ ℓ} ∩ {There are at least two jump times of Z(m) in Ij}) (3.25)

≤
[T/δ]
∑

j=1

P({Z(m)(T ) ≤ ℓ} ∩ {Z(m)((j + 1)δ)− Z(m)((j − 1)δ) ≥ 2}) (3.26)

≤
[T/δ]
∑

j=1

max
0≤µ≤ℓ

P(Z(m)((j + 1)δ)− Z(m)((j − 1)δ) ≥ 2|Z(m)((j − 1)δ) = µ). (3.27)

The limit of the last quantity as m → ∞, with the use of the function U of (3.23), is written as

[T/δ]
∑

j=1

max
0≤µ≤ℓ

∞
∑

x=2

U((j − 1)δ, (j + 1)δ, µ, x) ≤ T

δ
max
0≤µ≤ℓ

1≤j≤[T/δ]

∞
∑

x=2

U((j − 1)δ, (j + 1)δ, µ, x). (3.28)

Claim: The max in (3.28) is bounded above by δ2C(ℓ, T ) for an appropriate constant C(ℓ, T ) ∈ (0,∞)

that does not depend on m or δ.

Assuming the claim and takingm → ∞ in P(Am,δ) = P(Am,δ∩{Z(m)(T ) ≤ ℓ})+P(Am,δ∩{Z(m)(T ) >

ℓ}), we get

lim
m→∞

P(Am,δ) ≤ δC(ℓ, T ) + lim
m→∞

P({Z(m)(T ) > ℓ}).

Now let ε > 0. Because of the validity of (i) in the tightness requirements, there is ℓ large enough so that

the second term is < ε. Fixing this ℓ and taking δ → 0 in the inequality, we get (3.24).

Proof of the claim: We establish the above claim for each of the Theorems 1.1, 1.2, 1.6, 1.7. We

use the following bounds. If X,Y are random variables with X ∼ Poisson(λ) and Y ∼ NB(ν, p) then

P(X ≥ 2) ≤ λ2, (3.29)

P(Y ≥ 2) ≤ ν(ν + 1)

2
(1− p)2. (3.30)
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The first inequality is elementary, while the second is true because the difference of the two sides

P(Y ≥ 2)− ν(ν + 1)

2
(1− p)2 = 1− pν − rpν(1− p)− ν(ν + 1)

2
(1 − p)2

is an increasing function of p in [0, 1] with value 0 at p = 1.

According to the results of Section 3.1, the sum after the max in (3.28) equals P(X ≥ 2) where

X ∼



























NB
(

w0

k + µ, t1+(b0/k)
t2+(b0/k)

)

for Theorem 1.1,

Poisson
(

2δ
b0

)

for Theorem 1.2,

NB
(

w0

k + µ, 1−c−b0−kt1

1−c−b0−kt2

)

for Theorem 1.6,

Poisson
(

2δ log c
cb0−1

)

for Theorem 1.7,

(3.31)

and t1 := (j − 1)δ, t2 := (j + 1)δ. The claim then follows from (3.29) and (3.30).

3.3 Conclusion

It is clear from the form of the finite dimensional distributions that in all Theorems 1.1, 1.2, 1.6, 1.7

the limiting process Z is a pure birth process that does not explode in finite time. Its rate at the point

(t, j) ∈ [0,∞)× N is

λt,j = lim
h→0+

1

h
P(Z(t+ h) = j + 1|Z(t) = j)

and is found as stated in the statement of each theorem.

4 Deterministic and diffusion limits. Proof of Theorems 1.3, 1.4,

1.8, 1.9

These theorems are proved with the use of Theorem 7.1 in Chapter 8 of [5], which is concerned with con-

vergence of time-homogeneous Markov processes to diffusions. Since our basic Markov chain, (A
(m)
n )n∈N,

is not time-homogeneous, we do the standard trick of considering the chain {(A(m)
n , n)}n∈N which is

time-homogeneous.

4.1 Proof of Theorems 1.3, 1.8

For each m ∈ N+, consider the discrete time-homogeneous Markov chain

Z(m)
n =

(A
(m)
n

m
,
n

m

)

.

From any given state (x1, x2) of Z
(m)
n , the chain moves to either of (x1 + k/m, x2 +m−1), (x1, x2 +m−1)

with corresponding probabilities p(x1, x2,m), 1− p(x1, x2,m), where

p(x1, x2,m) :=











mx1

A
(m)
0 +B

(m)
0 +kmx2

in the case of Theorem 1.3,

1−qmx1
m

1−q
A

(m)
0

+B
(m)
0

+kmx2
m

in the case of Theorem 1.8.

This is true because when the chain is at the point (x1, x2), then the time n is n = mx2 and A
(m)
n +B

(m)
n =

A
(m)
0 +B

(m)
0 + kn. Define also

p(x1, x2) := lim
m→∞

p(x1, x2,m) =







x1

a+b+kx2
in the case of Theorem 1.3,

1−cx1

1−ca+b+kx2
in the case of Theorem 1.8.

(4.1)
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We compute the mean and the covariance matrix for the one step change of Z(m) = (Z(m),1, Z(m),2)

conditioned on its current position.

E
[

Z
(m),1
n+1 − Z(m),1

n |Z(m)
n = (x1, x2)

]

=
k

m
p(x1, x2,m), (4.2)

E
[

Z
(m),2
n+1 − Z(m),2

n |Z(m)
n = (x1, x2)

]

=
1

m
, (4.3)

E
[

(Z
(m),1
n+1 − Z(m),1

n )2|Z(m)
n = (x1, x2)

]

=
k2

m2
p(x1, x2,m), (4.4)

E
[

(Z
(m),1
n+1 − Z(m),1

n )(Z
(m),2
n+1 − Z(m),2

n )|Z(m)
n = (x1, x2)

]

=
k

m2
p(x1, x2,m), (4.5)

E
[

(Z
(m),2
n+1 − Z(m),2

n )2|Z(m)
n = (x1, x2)

]

=
1

m2
. (4.6)

For each m ∈ N+, we consider the process Λ
(m)
t := Z

(m)
[mt], t ≥ 0. According to Theorem 7.1 in Chapter 8

of [5], the sequence (Λ(m))m≥1 converges weakly to the solution, (St)t≥0, of the differential equation

dSt = b(St)dt,

S0 =
( a

0

)

,
(4.7)

where

St =

(

S
(1)
t

S
(2)
t

)

, b
( x

y

)

=
( kp(x, y)

1

)

. (4.8)

To apply the theorem, we need to check that the martingale problem MP(b,O) has a unique solution.

Here, O is the 2× 2 zero matrix. See [5], §5.4, for details on the martingale problem. The problem indeed

has unique solution because the differential equation (4.7) has a unique solution, and by well known

results, this implies the claim for the martingale problem.

It follows that the process (A
(m)
[mt])t≥0 converges, as m → ∞, to the solution of the differential equation

X0 = a, (4.9)

dXt = kp(Xt, t)dt. (4.10)

For both theorems, 1.3 and 1.8, this ordinary differential equation is separable and its unique solution is

the one stated.

4.2 Proof of Theorems 1.4, 1.9

Proof of Theorem 1.4. Call λ := a/(a+ b). For each m ∈ N+, consider the discrete time-homogeneous

Markov chain

Z(m)
n =

(√
m
(A

(m)
n

m
− a− λk

n

m

)

,
n

m

)

, n ∈ N.

From any given state (x1, x2) of Z
(m)
n , the chain moves to either of (x1 − km−1/2λ, x2 +m−1), (x1 +

km−1/2(1− λ), x2 +m−1) with corresponding probabilities

Π(m)

[

(x1, x2) ,

(

x1 −
k√
m
λ, x2 +

1

m

)]

=
B

(m)
n

A
(m)
n +B

(m)
n

, (4.11)

Π(m)

[

(x1, x2) ,

(

x1 +
k√
m
(1− λ), x2 +

1

m

)]

=
A

(m)
n

A
(m)
n +B

(m)
n

, (4.12)

with

A(m)
n = ma+ λkmx2 + x1

√
m, (4.13)

B(m)
n = A

(m)
0 +B

(m)
0 + kmx2 −A(m)

n . (4.14)
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We used the fact that when the chain is at the point (x1, x2), then the time n is n = mx2.

We compute the mean and the covariance matrix for the one step change of Z(m) = (Z(m),1, Z(m),2)

conditioned on its current position.

E
[

Z
(m),1
n+1 − Z(m),1

n |Z(m)
n = (x1, x2)

]

=
k√
m

(1− λ)A
(m)
n − λB

(m)
n

A
(m)
n +B

(m)
n

∼ 1

m

k{x1 − (θ1 + θ2)λ}
a+ b+ kx2

, (4.15)

E
[

Z
(m),2
n+1 − Z(m),2

n |Z(m)
n = (x1, x2)

]

=
1

m
, (4.16)

E
[

(Z
(m),1
n+1 − Z(m),1

n )2|Z(m)
n = (x1, x2)

]

=
k2

m

(

λ2 B
(m)
n

A
(m)
n +B

(m)
n

+ (1 − λ)2
A

(m)
n

A
(m)
n +B

(m)
n

)

∼ 1

m

k2ab

(a+ b)2
, (4.17)

E
[

(Z
(m),1
n+1 − Z(m),1

n )(Z
(m),2
n+1 − Z(m),2

n )|Z(m)
n = (x1, x2)

]

∼ 1

m2

kx1

a+ b+ kx2
, (4.18)

E
[

(Z
(m),2
n+1 − Z(m),2

n )2|Z(m)
n = (x1, x2)

]

=
1

m2
. (4.19)

Then, for each m ∈ N+, we consider the process Λ
(m)
t := Z

(m)
[mt], t ≥ 0. According to Theorem 7.1

in Chapter 8 of [5], the sequence (Λ(m))m≥1 converges in distribution to the solution, (St)t≥0, of the

stochastic differential equation

dSt = b(St)dt+ σ(St)dBt, (4.20)

S0 =

(

θ1

0

)

, (4.21)

where

St =

(

S
(1)
t

S
(2)
t

)

, Bt =

(

B
(1)
t

B
(2)
t

)

,

b
( x

y

)

=
(

k{x−(θ1+θ2)λ}
a+b+ky

1

)

, σ
( x

y

)

=

(

k
√
ab

a+b 0

0 0

)

.

B is a two dimensional standard Brownian motion. Again, to apply that theorem, we need to check that

the martingale problem MP(b, σ) has a unique solution. This follows from the existence and uniqueness

of strong solution for the above stochastic differential equation as the coefficients b, σ are Lipschitz and

grow at most linearly at infinity.

Thus, the process (Z
(m),1
[mt] )t≥0 converges in distribution, as m → ∞, to the solution of

Y0 = θ1, (4.22)

dYt =
k{Yt − (θ1 + θ2)λ}

a+ b+ kt
dt+ k

√
ab

a+ b
dB

(1)
t . (4.23)

The same is true for (C
(m)
t )t≥0 because supt≥0 |C

(m)
t − Z

(m),1
[mt] | ≤ k/

√
m. To solve the last SDE, we set

Ut := {Yt − (θ1 + θ2)λ}/(a+ b+ kt). Ito’s lemma gives that

dUt = k

√
ab

(a+ b)

1

a+ b+ kt
dB

(1)
t ,

and since U0 = (bθ1 − aθ2)/(a+ b)2, we get

Ut =
bθ1 − aθ2
(a+ b)2

+ k

√
ab

a+ b

∫ t

0

1

a+ b+ ks
dB(1)

s .

This gives (1.8). �
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Proof of Theorem 1.9. The proof is analogous to that of Theorem 1.4, only the algebra is a little more

involved. For each m ∈ N+, consider the discrete time-homogeneous Markov chain

Z(m)
n =

(√
m
(A

(m)
n

m
−Xn/m

)

,
n

m

)

, n ∈ N.

From any given state (x1, x2) of Z
(m)
n , the chain moves to either of

(x1, x2) + (km−1/2 +
√
m(Xx2 −Xx2+m−1),m−1), (4.24)

(x1, x2) + (
√
m(Xx2 −Xx2+m−1),m−1) (4.25)

with corresponding probabilities p(x1, x2,m), 1− p(x1, x2,m), where

p(x1, x2,m) =
[A

(m)
n ]qm

[A
(m)
0 +B

(m)
0 + kmx2]qm

(4.26)

and

A(m)
n = mXx2 + x1

√
m, (4.27)

B(m)
n = A

(m)
0 +B

(m)
0 + kmx2 −A(m)

n . (4.28)

We used the fact that when the chain is at the point (x1, x2), then the time n is n = mx2. For convenience,

let ∆Xx2 = Xx2+m−1 −Xx2 .

We compute the mean and the covariance matrix for the one step change of Z(m) = (Z(m),1, Z(m),2)

conditioned on its current position. Of the following relations, the first four are immediate, the fifth

follows from part (a) of the claim that follows and the fact that Z
(m),2
n+1 − Z

(m),2
n = 1/m.

E
[

Z
(m),1
n+1 − Z(m),1

n |Z(m)
n = (x1, x2)

]

=
k√
m
p(x1, x2,m)−

√
m∆Xx2 (4.29)

E
[

(Z
(m),1
n+1 − Z(m),1

n )2|Z(m)
n = (x1, x2)

]

=

(

k2

m
− 2k∆Xx2

)

p(x1, x2,m) +m(∆Xx2)
2

(4.30)

E
[

Z
(m),2
n+1 − Z(m),2

n |Z(m)
n = (x1, x2)

]

=
1

m
, (4.31)

E
[

(Z
(m),2
n+1 − Z(m),2

n )2|Z(m)
n = (x1, x2)

]

=
1

m2
, (4.32)

E
[

(Z
(m),1
n+1 − Z(m),1

n )(Z
(m),2
n+1 − Z(m),2

n )|Z(m)
n = (x1, x2)

]

= O(m−2) (4.33)

We examine now the asymptotics of the first two expectations.

Claim:

(a) E
[

Z
(m),1
n+1 − Z

(m),1
n |Z(m)

n = (x1, x2)
]

∼ 1

m

k log c

ca+b+kx2 − 1

(

cXx2x1 −
(cXx2 − 1)ca+b+kx2

ca+b+kx2 − 1
(θ1 + θ2)

)

+O(
1

m3/2
)

(b) E
[

{Z(m),1
n+1 − Z

(m),1
n }2|Z(m)

n = (x1, x2)
]

∼ 1

m
k2g(x2){1− g(x2)}+O(

1

m3/2
)

where g(x2) := limm→∞ p(x1, x2,m) = cXx2 −1
ca+b+kx2−1

.

Proof of the claim. We examine the asymptotics of p(x1, x2,m) and ∆Xx2 . We have

p(x1, x2,m) =
c
Xx2+

1√
mx1 − 1

c
A

(m)
0 +B

(m)
0

m +kx2 − 1

=
c
Xx2+

1√
mx1 − 1

c
a+b+kx2+

θ1+θ2√
m

+O( 1
m ) − 1

(4.34)

= g(x2) +
log c

ca+b+kx2 − 1

(

cXx2x1 −
(cXx2 − 1)ca+b+kx2

ca+b+kx2 − 1
(θ1 + θ2)

)

1√
m

+ O(
1

m
). (4.35)
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The second equality follows from a Taylor development. Also

∆Xx2 = X ′
x2

1

m
+O(m−2) = kg(x2)

1

m
+O(m−2). (4.36)

For X ′ we used the differential equation, (1.22), that X satisfies instead of the explicit expression for it.

Substituting these expressions in (4.29), (4.30), we get the claim.

Relation (1.23) implies that cXx2 = (ca+b − 1)/{cb − 1 + c−kx2(1 − c−a)}, and this gives that the

parenthesis following 1
m in equation (a) of the claim above equals

(ca+b − 1)x1 − cb(ca − 1)(θ1 + θ2)

cb − 1 + c−kx2(1− c−a)
(4.37)

and also that

g(x2){1− g(x2)} =
(ca − 1)(cb − 1)ca+kx2

(ca+b+kx2 − ca+kx2 + ca − 1)2
. (4.38)

It follows as before that the process (Z
(m)
[mt])t≥0 converges, as m → ∞, to the solution of the stochastic

differential equation

dSt = b(St)dt+ σ(St)dBt, (4.39)

S0 =

(

θ1

0

)

, (4.40)

where

St =

(

S
(1)
t

S
(2)
t

)

, Bt =

(

B
(1)
t

B
(2)
t

)

,

b
( x

y

)

=
(

k log c
ca+b+ky−1

{

(ca+b−1)x−cb(ca−1)(θ1+θ2)
cb−1+c−ky(1−c−a)

}

1

)

,

σ
( x

y

)

=

(

k
√

(ca − 1)(cb − 1) c(a+ky)/2

ca+b+ky−ca+ky+ca−1 0

0 0

)

.

B is a two dimensional standard Brownian motion. Again, the martingale problem MP(b, σ) has a unique

solution due to the form of the functions b, σ. And with analogous arguments as in Theorem 1.4, we get

that the process (Ĉ
(m)
t )t≥0 converges to the unique solution of the stochastic differential equation (1.24).

To solve that, we remark that a solution of a stochastic differential equation of the form

dYt = (α(t)Yt + β(t))dt + γ(t)dWt (4.41)

with α, β, γ : [0,∞) → R continuous functions is given by

Yt = e
∫

t
0
α(s) ds

(

Y0 +

∫ t

0

β(s)e−
∫

s
0
α(r) dr ds+

∫ t

0

γ(s)e−
∫

s
0
α(r) dr dWs

)

. (4.42)

[To discover the formula, we apply Itó’s rule to Yt exp{−
∫ t

0 α(s) ds} and use (4.41).] Applying this formula

for the values of α, β, γ dictated by (1.24) we arrive at (1.25). �

5 Proofs for the q-Pólya urn with many colors

Proof of Theorem 1.10. First, the equality of the expressions in (1.27), (1.28) follows from the defini-

tion of the q-multinomial coefficient.

We will prove (1.27) by induction on l. When l = 2, (1.27) holds because of (1.14). In that relation,

we have x1 = x, x2 = n − x. Assuming that (1.27) holds for l ≥ 2 we will prove the case l + 1. The
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probability P (Xn,2 = x2, . . . , Xn,l+1 = xl+1) equals

P (Xn,3 = x3, . . . , Xn,l+1 = xl+1)P(Xn,2 = x2 | Xn,3 = x3, . . . , Xn,l+1 = xl+1) (5.1)

= q
∑l+1

i=3 xi

∑i−1
j=1(aj+kxj)

[− a1+a2
k

x1+x2

]

q−k

∏l+1
i=3

[−ai
k

xi

]

q−k

[− a1+...al+1
k

n

]

q−k

· qx2(a1+kx1)

[− a1
k

x1

]

q−k

[−a2
k

x2

]

q−k

[− a1+a2
k

x1+x2

]

q−k

(5.2)

= q
∑l+1

i=2 xi

∑i−1
j=1(aj+kxj)

∏l+1
i=1

[−ai
k

xi

]

q−k

[− a1+...al+1
k

n

]

q−k

. (5.3)

This finishes the induction provided that we can justify these two equalities. The second is obvious, so

we turn to the first. The first probability in (5.1) is specified by the inductive hypothesis. That is, given

the description of the experiment, in computing this probability it is as if we merge colors 1 and 2 into

one color which is placed in the line before the remaining l− 1 colors. This color has initially a1+a2 balls

and we require that in the first n drawings we choose it x1 + x2 times. The second probability in (5.1)

is specified by the l = 2 case of (1.27), which we know. More specifically, since the number of drawings

from colors 3, 4, . . . , l + 1 is given, it is as if we have an urn with just two colors 1, 2 that have initially

a1 and a2 balls respectively. We do x1 + x2 drawings with the usual rules for a q-Pólya urn, placing in a

line all balls of color 1 before all balls of color 2, and we want to pick x1 times color 1 and x2 times color

2. �

Proof of Theorem 1.11. The components of (Xn,2, Xn,3, . . . , Xn,l) are increasing in n, and from The-

orem 1.5 we have that each of them has finite limit (we treat all colors 2, . . . , l as one color). Thus the

convergence of the vector with probability one to a random vector with values is Nl−1 follows. In partic-

ular, we also have convergence in distribution, and it remains to compute the distribution of the limit.

Let x1 := n− (x2 + · · ·+ xl). Then the probability in (1.27) equals

P (Xn,2 = x2, . . . , Xn,l = xl) = q−
∑

1≤i<j≤l ajxi

∏l
i=1

[ ai
k +xi−1

xi

]

q−k

[

∑l
i=1

ai
k +n−1

n

]

q−k

(5.4)

= q
∑

1≤j<i≤l xiaj

∏l
i=1

[ ai
k +xi−1

xi

]

qk

[

n+
∑l

i=1
ai

k −1
n

]

qk

(5.5)

= q
∑l

i=2(xi
∑i−1

j=1 aj)

{

l
∏

i=2

[ai

k + xi − 1

xi

]

qk

}

[

x1+
a1
k −1

x1

]

qk

[

n+
∑l

i=1
ai

k −1
n

]

qk

. (5.6)

In the first equality, we used (2.2) while in the second we used (2.3). When we take n → ∞ in (5.6), the

only terms involving n are those of the last fraction, and (2.11) determines their limit. Thus, the limit of

(5.6) is found to be the function f(x2, . . . , xl) in the statement of the theorem. �

Proof of Theorem 1.12. For each m ∈ N
+, we consider the discrete time-homogeneous Markov chain

Z(m)
n :=

(

n

m
,
A

(m)
n,2

m
,
A

(m)
n,3

m
, . . . ,

A
(m)
n,l

m

)

, n ∈ N.

From any given state (t, x) := (t, x2, x3, . . . , xl) that Z
(m) finds itself it moves to one of

(

t+
1

m
,x2, . . . , xi +

1

m
, . . . , xl

)

, i = 2, . . . , l,

(

t+
1

m
,x2, . . . , xi, . . . , xl

)
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with corresponding probabilities

pi(x2, . . . , xl, t,m) = qmsi−1(t)
[mxi]q

[msl(t)]q
, i = 2, . . . , l, (5.7)

p1(x2, . . . , xl, t,m) =
[mx1(t)]q
[msl(t)]q

, (5.8)

where si(t) = x1(t)+
∑

1<j≤i xj for i ∈ {1, 2, . . . , l} and x1(t) := m−1
∑l

j=1 A
(m)
0,j +kt−∑2≤j≤l xi. These

follow from (1.26) once we count the number of balls of each color present at the state (t, x). To do this,

we note that Z
(m)
n = (t, x) implies that n = mt drawings have taken place so far, the total number of balls

is A
(m)
0,1 + · · · + A

(m)
0,l + kmt, and the number of balls of color i, for 2 ≤ i ≤ l, is mxi. Thus, the number

of balls of color 1 is A
(m)
0,1 + · · ·+A

(m)
0,l + kmt−m

∑

2≤j≤l xi = mx1(t). The required relations follow.

Let x1 := limm→∞ x1(t) = σl + kt −
∑

2≤j≤l xi and si := limm→∞ si(t) =
∑

1≤j≤i xi for all i ∈
{1, 2, . . . , l}. Then, since q = c1/m, for fixed (t, x2, . . . , xl) ∈ [0,∞)l with (x2, . . . , xl) 6= 0, we have

lim
m→∞

pi(x2, . . . , xl, t,m) = csi−1
[xi]c
[sl]c

(5.9)

for all i = 2, . . . , l. We also note the following.

Z
(m)
n+1,1 − Z

(m)
n,1 =

1

m
, (5.10)

E
[

Z
(m)
n+1,i − Z

(m)
n,i |Z(m)

n = (t, x2, . . . , xl)
]

=
k

m
pi(x2, . . . , xl, t,m), (5.11)

E
[

(Z
(m)
n+1,i − Z

(m)
n,i )2|Z(m)

n = (t, x2, . . . , xl)
]

=
k2

m2
pi(x2, . . . , xl, t,m), (5.12)

E
[

(Z
(m)
n+1,i − Z

(m)
n,i )(Z

(m)
n+1,j − Z

(m)
n,j )|Z(m)

n = (t, x2, . . . , xl)
]

= 0 (5.13)

for i, j = 2, 3, . . . , l with i 6= j.

Therefore, with similar arguments as in the proof of Theorem 1.3, as m → +∞, (Z
(m)
[mt])t≥0 converges

in distribution to Y , the solution of the ordinary differential equation

dYt = b(Yt)dt,

Y0 = (0, a2, . . . , al),
(5.14)

where b(t, x2, . . . , xl) =
(

1, b(2)(t, x), b(3)(t, x), . . . , b(l)(t, x)
)

with

b(i)(t, x) = kcsi−1
[xi]c
[sl]c

for i = 2, 3, . . . , l. Note that sl = σl + kt does not depend on x.

Since A
(m)
[mt],1 + A

(m)
[mt],2 + · · · + A

(m)
[mt],l = kmt + A

(m)
0,1 + A

(m)
0,2 + · · · + A

(m)
0,l , we get that the process

(A
(m)
[mt],1/m,A

(m)
[mt],2/m+ · · ·+A

(m)
[mt],l/m)t≥0 converges in distribution to a process (Xt,1, Xt,2, . . . , Xt,l)t≥0

so that Xt,1 + · · ·+Xt,l = a1 + a2 + · · ·+ al + kt, while the Xt,i, i = 2, . . . , l, satisfy the system

X ′
t,i = kcσl+kt−∑l

j=i Xt,i
1− cXt,i

1− cσl+kt
for all t > 0, (5.15)

X0,i = ai, (5.16)

with i = 2, 3, . . . , l. Letting Zr,i = c
X 1

k log c
log r,i for all r ∈ (0, 1] and i ∈ {1, 2, . . . , l}, we have for the

Zr,i, i ∈ {2, 3, . . . , l} the system

Z ′
r,i

1− Zr,i
=

σl

1− σlr

1
∏

i<j≤l Zr,j
, (5.17)

Z1,i = cai . (5.18)

20



In the case i = l, the empty product equals 1. It is now easy to prove by induction (starting from i = l

and going down to i = 2) that

Zr,i =
cσl−σi−1(1− cσlr)− cσl(1− r)

cσl−σi(1− cσlr) − cσl(1− r)
(5.19)

for all r ∈ (0, 1]. Since Zr,1Zr,2 · · ·Zr,l = cσlr, we can check that (5.19) holds for i = 1 too. The fraction

in (5.19) equals

cai
(1− cσlr) − cσi−1(1− r)

(1− cσlr) − cσi(1 − r)
. (5.20)

Recalling that Xt,i = (log c)−1 logZckt , we get (1.30) for all i ∈ {1, 2, . . . , l} . �

Proof of Theorem 1.13. This is proved in the same way as Theorem 1.12. We keep the same notation

as there. The only difference now is that limm→∞ pi(t, x2, . . . , xl,m) = xi/sl. As a consequence, the

system of ordinary differential equations for the limit process Yt := (t,Xt,2, . . . , Xt,l) is (5.14) but with

b(i)(t, x) =
kxi

sl
.

Recall that sl = σl+kt. Thus, for i = 2, 3, . . . , l, the process Xt,i satisfies X
′
t,i = kXt,i/(σl+kt), X0,i = ai,

which give immediately the last l − 1 coordinates of (1.31). The formula for the first coordinate follows

from Xt,1 +Xt,2 + · · ·+Xt,l = kt+ σl. �
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urn model, with an application to computer data structures.” SIAM Journal on Algebraic Discrete

Methods 6, no. 3 (1985): 394-405.

[2] Bai, Zhi-Dong, Feifang Hu, and Li-Xin Zhang. “Gaussian approximation theorems for urn models

and their applications.” The Annals of Applied Probability 12, no. 4 (2002): 1149-1173.
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. Introduction 

The payoff of a simple European or American-style call or put

ption while it depends heavily upon the value of the underlying

sset, yet not particularly so on the path taken. In general, options

erivatives products are determined by many features and primar-

ly upon the underlying assets, as commonly reported in the rel-

vant literature. However, a plethora of exotic options including

inary options, Cash-or-Nothing, Asset-or-Nothing, Barrier, Double

arrier options amongst other, all depend strongly on the path of
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he asset as well and on whether price barriers are hit or not.

hese barriers eventually control the option valuation. Once either

f these barriers is breached, the status of the option is immedi-

tely determined, namely either the option comes into existence

n case the barrier - as called - is in- or knock-in barrier, or ceases

o exist if the barrier is out- or knock-out barrier. Other double

arrier options of many types also exist (see [1] ). In this work, we

tilize double barrier options as proper proxies for many categories

f exotic derivatives. To the best of our knowledge, we present for

he first time new ways of estimating the expectation of the time

hen various exotic options seize to exist, their hitting probabil-

ties, the exit times and their expectations, boundary local times

ntil the first hitting and other probabilistic quantities related
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to the boundary local times. Importantly, we deliver closed-form

solutions. 

The diversity of exotic barrier options is indicative of their

applicability in modern derivatives markets. Many different com-

binations of barrier options can be implemented in derivatives

markets for equities, FX, commodities and bonds. We present

thereafter the most important types: a double knock-out (DKO)

or one touch knock-out Barrier option has both lower and upper

knock-out barriers. Initially the holder of the option owns a call or

a put. If at any time, either barrier is breached, the option seizes

to exist (knocked-out). In some cases at knock-out, the holder

may receive a rebate. For a double knock-in (DKI), or one touch

knock-in barrier, if either barrier is breached, the holder of the

barrier option is knocked-in, hence now owns the call or put.

In cases where the option is never knocked-in, the holder may

receive a rebate. An upper barrier knock-out (UKO) double barrier

involves the upper barrier which when breached prior to the lower

barrier, the option holder is knocked out, whilst in case the lower

is breached prior to the upper or neither barrier is breached, the

holder owns the option. Furthermore, in case of an upper barrier

knock-out double option (UKO2) if the upper barrier is breached

prior to the lower barrier, the option holder gets nothing and in-

stead in case the lower barrier is breached prior to the upper, the

holder receives an option. All in all, if neither barrier is breached,

the holder gets nothing. For a lower barrier knock-out (LKO) if

the lower barrier is hit prior to the upper barrier, the holder

is knocked out and when the upper barrier is hit prior to the

lower or neither barrier is breached, the holder owns an option.

Additionally, for double lower barrier knock-outs (LKO2) if the

lower barrier is breached prior to the upper one, the option holder

gets nothing while when the upper barrier is breached prior to the

lower, the holder receives the option. If neither barrier is breached,

the holder is not compensated. An upper barrier knock-in double

barrier (UKI) relates to the case whereby, if the upper barrier is

reached prior to the lower barrier, the option holder receives a call

or put, whilst in case neither barrier is hit, the holder owns an op-

tion. A lower barrier knock-in (LKI) performs similarly to the UKI,

yet with a switch on the lower and upper barrier. A double touch

knock-out option (DTKO) exists when the holder initially holds a

call or put option. However, if both the upper and lower barriers

are breached during the life of the option, the holder is knocked

out. For a double touch knock-in option (DTKI), if both the upper

and lower barriers are breached during the life of the option, the

holder is knocked-in to a call or put option. With all of the afore-

mentioned barrier variations, the specification of rebate is possible.

These rebates (cash or asset amounts) can be specified if one or

the other barrier is hit or if neither barrier is reached. Using these

rebate features is a way of including digital / binary payoffs that

depend on barrier levels. Finally, the type of monitoring conducted

upon the barriers is a very important feature as well. Several

possibilities exist, namely each barrier is continuously monitored

for the life of the option or the barrier is partially monitored for

specific windows during the option life. During these windows,

the barriers are monitored continuously. Alternatively, each barrier

is partially monitored for specific windows during the life of the

option and the barriers are monitored at discrete dates or in

another case the barrier is discretely monitored at specific dates. 

Merton [2] was the first to derive a closed form solution for

a down-and-out European call option. Other closed-form pricing

formulae of exotic derivatives i.e., particularly for single-barrier

options were published by Rubinstein and Reiner [3] . Rich [4] pro-

vided a mathematical framework for pricing the single-barrier

options. A valuation method for double-barrier options based upon

the probabilistic approach was discussed by Kunitomo and Ikeda

[5] . The values of the double barrier options can also be obtained

by solving the Black–Scholes partial differential equation with the
orresponding boundary conditions using the method of separa-

ion of variables. Analytical solutions of one-touch double-barrier

inary options, in which a fixed payoff is determined by whether

t is touching the barrier, are derived by Hui [6] . Hui [7] extends

egular single and double barrier options to time-dependent bar-

ier options in which the barrier period covers a segment of time

ither at the beginning (front end) or the end (rear end) of the

ption life. This feature makes the time-dependent barrier options

ore flexible than the regular barrier options for an investor,

aving a particular view on an underlying asset in a certain period

f time. The one-time barrier discontinuity in the time-dependent

arrier options makes their pricing formulae different from the

egular barrier option-pricing formulae. Roberts and Shortland

8] consider the problem of pricing derivative securities which

nvolve a barrier clause. They present general techniques to cal-

ulate, or estimate accurately barrier option prices, using methods

or estimating diffusion process with hitting times. Mario Dell’Era

9] discusses the efficiency of the spectral method for computing

he value of double barrier options. Using this method, one may

rite the option price as a Fourier series with suitable coefficients.

owever, all of the aforementioned methods cannot be generalized

is-a-vis the valuation of many other exotic derivatives, and more

mportantly they do not tackle with all the analytical closed-form

pecificities occuring and remain unsolvable. 

We contribute to the literature in significant ways. Specifically,

o our knowledge this is the first study to estimate a closed-form

olution for all the inherent features of a variety of barrier options

nd other proxies. Specifically, i) the expectation of the time that

he option dies out is calculated, ii) the hitting probabilities i.e.,

he probabilities that the option hits first the upper or the lower

arrier are accurately estimated, iii) certain probabilistic quantities

elated to the boundary local time until first hitting are introduced,

v) the exit times and their expectations are estimated as well as

) the boundary local times until the first hitting, which are of

mmense importance to the investors, alongside with the moment

enerating functions for all of the above. In this work, we consider

s our proxy the double knock-out barrier with two barriers

elated to the strike price: an upper and a lower one. The upper

arrier defines the level where the trigger price is above the strike

rice, while the lower barrier establishes a point at which the trig-

er price is below the strike. If the underlying does not break out

f either barrier at any time during the option life, the option acts

ike a plain vanilla option and the holder would receive a specified

ayout. However, if one of the barriers has been broken through,

he option dies out (gets knocked-out). Our novel concept is that

e assume that the underlying asset follows a geometric Brownian

otion on a 1 −dimensional sphere S 1 = { x = (a cos ϕ, a sin ϕ) ∈
 

2 | 0 ≤ ϕ < 2 π} (i.e. circle) with center at the origin and radius

 > 

H 2 
2 π . In this case, the transformation introduces ϕ 0 , ϕ 1 ∈ [0 , 2 π)

uch that H 1 = aϕ 0 and H 2 = aϕ 1 i.e., two points on the circle, that

enote the upper and lower barriers. The underlying asset then

tarts from a point φ ∈ D = ( H 1 , H 2 ) . Via this method, we estimate

he closed-form solution of the price of every barrier option or

ny exotic one thereby. Moreover, we calculate the expectation of

he time the option dies out. The probabilities that the option hits

rst the upper or the lower barrier are calculated and we evaluate

ertain probabilistic quantities related to the boundary local time

f the domain D until first hitting. We deliver valuable closed-

orm mathematical solutions of paramount importance for traders,

nvestors, speculators and more broadly speaking for financial

nstitutions. The paper is organized as follows: Section 2 presents

reliminary definitions, propositions and proofs, whilst Section 3

escribes the valuation method and a theorem related to that.

ection 4 recalls some definitions and proofs, and presents new

esults on exit times, expectations, hitting probabilities and

oments generating fnctions. Section 5 exposes the proofs for
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stimating boundary local times. Finally, Section 6 concludes with

ery interesting remarks regarding the extension of the results

n spheres of higher dimensions and future applications of the

resented methodology to the valuation of other exotic derivatives

s well as to other mathematical problems in many topical fields. 

. Preliminaries 

.1. The n −sphere S n 

efinition 2.1. Let n ∈ N 

∗ = { 1 , 2 , 3 , . . . } . The n −dimensional

phere S n with center (c 1 , c 2 , ... , c n +1 ) and radius a > 0 is (defined

o be) the set of all points x = (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 satisfying

(x 1 − c 1 ) 
2 + (x 2 − c 2 ) 

2 + . . . + (x n +1 − c n +1 ) 
2 = a 2 . Thus, 

 

n = { (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 | (x 1 − c 1 ) 
2 + (x 2 − c 2 ) 

2 

+ . . . + (x n +1 − c n +1 ) 
2 = a 2 } (2.1) 

The points of the n −sphere with center at the origin and radius

 for n = 1 may also be discribed in spherical coordinates in the

ollowing way 

 

1 = { x = (a cos ϕ, a sin ϕ) ∈ R 

2 | 0 < ϕ ≤ 2 π} (2.2)

The Laplace-Beltrami operator of a smooth function f on S 1 is 

1 f = 

1 

a 2 
∂ 2 f 

∂ϕ 

2 
(2.3) 

see [10] ). 

.2. Brownian motion on S n 

efinition 2.2. The Brownian motion on S n is a diffusion (Markov)

rocess X t , t ≥ 0, on S n whose transition density is a function P ( t, x,

 ) on (0 , + ∞ ) × S n × S n satisfying 

∂P 

∂t 
= 

1 

2 

�n P (2.4) 

 (t, x, y ) → δx (y ) as t → 0 

+ (2.5)

here �n is the Laplace–Beltrami operator on S n acting on the

 -variables and δx ( y ) is the delta mass at x , i.e. P ( t, x, y ) is the

eat kernel of S n . The heat kernel exists, it is unique, positive and

mooth in ( t, x, y ). 

.2.1. Further properties of the heat kernel P ( t, x, y ) 

Moreover the heat kernel possesses the following properties: 

1. Symmetry in x, y , that is P (t, x, y ) = P (t, y, x ) . 

2. The semigroup identity: For any s ∈ (0, t ) 

P (t, x, y ) = 

∫ 
S n 

P (s, x, z) P (t − s, z, y ) dμz (2.6)

where d μ is the area measure element of S n . 

3. As t → ∞ , P ( t, x, y ) approaches the uniform density on S n , i.e.

lim 

t→∞ 

P (t, x, y ) = 

1 
A n 

where A n is the area of the S n with radius a .

It is well known that 

A n = 

2 π
n +1 

2 a n 

( n −1 
2 

)! 
for n odd and A n = 

2 n ( n 
2 

−1)! π
n 
2 a n 

(n −1)! 
for n even 

4. Finally, the symmetry of S n implies that P ( t, x, y ) depends only

on t and d ( x, y ), the distance between x and y . In spherical co-

ordinates it depends on t and the angle ϕ between x and y.

Hence P (t, x, y ) = P (t, ϕ) where P ( t , ϕ) satisfies 

∂P 

∂t 
= 

1 

2 

�n P = 

1 

2 a 2 

[
(n − 1) cot ϕ 

∂P 

∂ϕ 

+ 

∂ 2 P 

∂ϕ 

2 

]
(2.7) 
and 

lim 

t→ 0 + 
aA n −1 P (t, ϕ) sin 

n −1 ϕ = δ(ϕ) (2.8)

The symbol δ( ·) denotes the standard Dirac delta function on R .

.2.2. Explicit form of the heat kernel of S 1 

Reminder (Poisson Summation Formula) . Let f ( x ) be a function

n the Schwartz space S(R ) , where S(R ) consists of the set of all

nfinitely differentiable functions f on R so that f and all its deriva-

ives f ( l ) are rapidly decreasing, in the sense that 

up 

x ∈ R 
| x | k ∣∣ f (l) (x ) 

∣∣ < ∞ for every k, l ≥ 0 . 

hen 

 

n ∈ Z 
f (x + 2 πn ) = 

1 

2 π

∑ 

n ∈ Z 
F (n ) exp (inx ) , 

here F ( ξ ) is the Fourier transform of f ( x ), i.e. 

 (ξ ) = 

∫ + ∞ 

−∞ 

f (x ) exp (−iξx ) dx, ξ ∈ R . 

or example, if 

f (x ) = exp (−Ax 2 + Bx ) , A > 0 , B ∈ C , 

hen 

 (ξ ) = 

√ 

π

A 

exp 

(
(iξ − B ) 2 

4 A 

)

.3. The case of S 1 

roposition 2.1. The transition density function of the Brownian mo-

ion X t , t ≥ 0 on S 1 with radius a is the function 

p(t, ϕ ) = 

1 

2 πa 

∑ 

n ∈ Z 
exp 

(
− n 

2 t 

2 a 2 
+ inϕ 

)
. (2.9)

quivalently 

p(t, ϕ) = 

1 

πa 

∑ 

n ∈ N 

[
exp 

(
− n 

2 t 

2 a 2 

)
cos (nϕ) 

]
− 1 

2 πa 
. (2.10) 

nd 

p(t, ϕ) = 

1 √ 

2 πt 

∑ 

n ∈ Z 
exp 

(
−a 2 

2 t 
( ϕ − 2 πn ) 

2 

)
. (2.11) 

roof. If 

p(t, ϕ) = 

1 

πa 

∑ 

n ∈ N 

[
exp 

(
− n 

2 t 

2 a 2 

)
cos (nϕ) 

]
− 1 

2 πa 
, 

hen 

∂ p(t, ϕ) 

∂t 
= − 1 

2 πa 3 

∑ 

n ∈ N 
n 

2 cos (nϕ) exp 

(
− n 

2 t 

2 a 2 

)
(2.12) 

nd 

∂ 2 p(t, ϕ) 

∂ϕ 

2 
= − 1 

πa 

∑ 

n ∈ N 
n 

2 cos (nϕ) exp 

(
− n 

2 t 

2 a 2 

)
. (2.13) 

herefore 

∂ p(t, ϕ) 

∂t 
= 

1 

2 a 2 
∂ 2 p(t, ϕ) 

∂ϕ 

2 
. 

e will now show that 

lim 

→ 0 + 
ap(t, ϕ) = δ(ϕ) . 

f ϕ ∈ (0, 2 π ), then 

lim 

→ 0 + 
ap(t, ϕ) = 0 . (2.14)

ext we observe that 
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a  

w  
∫ 2 π

0 

ap(t, ϕ) dϕ = 

1 

π

∫ 2 π

0 

∑ 

n ∈ N 

[
exp 

(
− n 

2 t 

2 a 2 

)
cos (nϕ) 

]
dϕ − 1 . 

(2.15)

For t > 0 let us consider the functions 

f n : [0 , 2 π ] → R , n ∈ N , 

with 

f n (ϕ) = cos (nϕ) exp 

(
− n 

2 t 

2 a 2 

)
. 

Notice that f n ( ϕ) are integrable functions on [0, 2 π ]. Furthermore 

+ ∞ ∑ 

n =1 

f n (ϕ) 

converges uniformly on [0, 2 π ] because 

| f n (ϕ) | ≤ exp 

(
− n 

2 t 

2 a 2 

)
and the series 
∞ ∑ 

n =1 

exp 

(
− n 

2 t 

2 a 2 

)
converges. Therefore (2.15) gives ∫ 2 π

0 

ap(t, ϕ) dϕ = −1 + 

1 

π

∑ 

n ∈ N 
exp 

(
− n 

2 t 

2 a 2 

)∫ 2 π

0 

cos (nϕ) dϕ, 

thus ∫ 2 π

0 

ap(t, ϕ) dϕ = 1 , for every t > 0 . (2.16)

Therefore from (2.15) and (2.16) 

lim 

→ 0 + 
ap(t, ϕ) = δ(ϕ) 

and this complete the proof. �

2.4. Geometric Brownian motion on a 1-dimentional sphere S 1 

Definition 2.3. Let X t , t ≥ 0 be the Brownian motion on S 1 of radius

a . The geometric Brownian motion on S 1 of radius a with drift is 

Z t = Z 0 exp 

[ (
r − 1 

2 

σ 2 
)

t + σaX t 

] 
(2.17)

i.e. Z t have stochastic differential dZ t = rZ t dt + σaZ t dX t . 

We have already shown that, the Brownian motion on S 1 of ra-

dius a , in spherical coordinates is the solution of the stochastic

differntial equation d X t = 

1 
a d B t . Hence dZ t = rZ t dt + σZ t dB t . There-

fore, the generator L of Z t is given by 

L f (ϕ) = rϕ 

∂ f 

∂ϕ 

+ 

1 

2 

σ 2 ϕ 

2 ∂ 
2 f 

∂ϕ 

2 
(2.18)

2.5. Transition density function of the geometric Brownian motion on 

S 1 

Let X t , t ≥ 0 be the Brownian motion on S 1 of radius a . The tran-

sition density function of the Brownian motion X t , t ≥ 0 on S 1 of

radius a is the function (2.9) i.e. 

p ( t, ϕ ) = 

1 

2 πa 

∑ 

n ∈ Z 
exp 

(
− n 

2 t 

2 a 2 
+ inϕ 

)

This means that F X t (ϕ) = P [ X t ≤ ϕ] = 

∫ ϕ 
0 

p(t, ϕ) dϕ. The geomet-

ric Brownian motion Z t , t ≥ 0 on S 1 of radius a is Z t = Z 0 exp [(r −
1 σ 2 ) t + σaX t ] . Hence, 
2 H
F Z t (ϕ) = P [ Z t ≤ ϕ] = P [ Z 0 exp [(r − 1 
2 σ

2 ) t + σaX t ] ≤ ϕ] = P [ X t ≤
1 
σa ln ( ϕ Z 0 

) + ( σ2 a − r 
σa ) t] = 

∫ 1 
σa ln ( 

ϕ 
Z 0 

)+( σ
2 a 

− r 
σa ) t 

−∞ 

p(t, y ) dy. 

Now differentiating with respect to ϕ, we obtain that the tran-

ition density function of the geometric Brownian motion, is the

unction 

p z t ( t, ϕ ) = 

1 

σaϕ 

p 

(
t , 

1 

σa 
ln 

(
ϕ 

Z 0 

)
+ 

(
σ

2 a 
− r 

σa 

)
t 

)
.e. 

p z t ( t, ϕ ) 

= 

1 

2 πa 2 σϕ 

∑ 

n ∈ Z 
exp 

(
− n 

2 t 

2 a 2 
+ in 

(
1 

σa 
ln 

(
ϕ 

z 0 

)
+ 

σ 2 − 2 r 

2 σa 
t 

))
(2.19)

. Value of the derivative security 

We limit ourselves to assume that the underlying asset follows

 Geometric Brownian motion with drift, i.e. dY t = rY t dt + σY t dB t ,

here Y t is the asset price and B t , t ≥ 0 is the Brownian motion. 

Define 
(Y T ) = (Y T − k ) + = max { (Y T − k ) , 0 } be the payoff of

he derivative security at time T if the underlying security is

t Y T ( k is the strike price of the option). Assume that there

s a double knock-out Barrier at levels H 1 , H 2 ∈ R such that

 1 < H 2 . i.e., if one of the barrier is reached in a double knock-

ut option, the option is killed. The idea is to consider the

eometric Brownian motion on a 1 −dimensional sphere S 1 =
x = ( a cos ϕ, a sin ϕ ) ∈ R 

2 | 0 ≤ ϕ < 2 π
}

(circle) with center at the

rigin and radius a > 

H 2 
2 π . 

In this case there exist ϕ 0 , ϕ 1 ∈ [0, 2 π ) such that H 1 = aϕ 0 and

 2 = aϕ 1 and k = aϕ k . For arbitrary process S and H 1 , H 2 ∈ R such

hat H 1 < H 2 , we use the following notation according to [8] : 

Y 
H 1 

= inf { t : Y ( t ) ≤ H 1 } if Y (0) = H 1 and 

Y 
H 2 

= inf { t : Y ( t ) ≥ H 2 } if Y (0) H 2 

here H_{1} and H 2 are the Barriers. 

Let Y ( t ) be the value of the stock at time t ∈ [0, T ], where

 = min { τ y 
H 1 

, τ y 
H 2 

} . From the theory of arbitrage-free pricing in a

omplete market (see [11] ), the value of the derivative security can

hen be expressed as follows 

 (t, x ) = V (T , H 1 , H 2 , Y (t) , t) = E[
(S T ) I(τ
y 
H 1 

< T ) I(τ y 
H 2 

< T ) 

(3.1)

here 
(Z T ) = (Y T − k ) + = max { (Y T − k ) , 0 } is the payoff of the

erivative security at time T if the underlying security is at Y T . The

oundary problem for V ( t, x ) can be tackled with fast and accurate

ricing of Barrier options under Levy processes to solve it 

 

 

 

 

 

 

 

 

 

∂V 
∂t 

+ LV − rV = 0 

V ( 0 , x ) = ( x 0 − k ) 
+ 

V ( t, H 1 ) = V ( t, H 2 ) = 0 

V ( t, x ) = 0 for every x ∈ ( −∞ , H 1 ] ∪ [ H 2 , + ∞ ) 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(3.2)

here L is the generator of Y t . 

In case Z t is the Geometric Brownian motion without drift on

 1-dimensional sphere S 1 of radius a > 

H 2 
2 π , i.e. dZ t = σaZ t dX t and

e let φ1 , ϕ 2 ∈ [0, 2 π ), such that ϕ 1 < ϕ 2 with aϕ 1 = H 1 and ϕ 2 =
 , then the problem (3.2) is equivelant to 
2 
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3.3) 

w

T  knock-out call double barrier option is given by relation 

V
∑ 

n ∈ Z 

[ 

exp 

[ 

( nπσ ) 
2 
( T − t ) 

2 ln 

2 
(

H 2 
H 1 

)
] 

sin 

( 

nπξ

ln 

(
H 2 
H 1 

)
) 

sin 

( 

nπ ln 

(
x 

H 1 

)
ln 

(
H 2 
H 1 

)
) ] 

dξ

(3.4) 

w σ 2 

2 ) (see [8] ) 

4

D ith a filtration { F t } , t ∈ [0 , + ∞ ) , if for every t ≥ 0 { F t } is a σ -algebra of 

s at t 1 < t 2 , we have that F t 1 ⊂ F t 2 . (i.e. { F t } is an increasing family of sub 

σ

D ed with a filtration { F t }. A random variable T is a stopping time with 

r

omain. Then T = inf { t ≥ 0 | Z t / ∈ D } is a stopping time with respect to 

F see [12] ). 

4

P We consider the set D in S 1 , such that D = (ϕ 1 , ϕ 2 ) . If Z t is the Geometric 

B  D, then the expectation of T is given by 

E

ϕ 

σ2 −2 r 

σ2 −ϕ 

σ2 −2 r 

σ2 

1 

)
ln ϕ 2 

(4.1) 

P

L

u

r (4.2) 

w

u (4.3) 

u

 1 −
(

ϕ 

σ2 −2 r 

σ2 − ϕ 

σ2 −2 r 

σ2 

1 

)
ln ϕ 2 

E

 1 −
(

ϕ 

σ2 −2 r 

σ2 − ϕ 

σ2 −2 r 

σ2 

1 

)
ln ϕ 2 

�

 

 

 

 

 

 

 

 

 

∂u 
∂t 

+ rϕ 

∂u 
∂ϕ 

+ 

1 
2 
σ 2 ϕ 

2 ∂ 2 u 
∂ϕ 2 

− ru = 0 

u ( 0 , ϕ ) = a ( ϕ 0 − ϕ k ) 
+ 

u ( t, ϕ 1 ) = u ( t, ϕ 2 ) = 0 

u ( t, ϕ ) = 0 for every ϕ ∈ D 

c , where D = ( ϕ 1 , ϕ 2 ) ⊂ S 1 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

here aϕ 0 = x 0 and aϕ k = k 

heorem 3.1. Under Black–Scholes framework the arbitrage-price of a

 ( t, x ) = 

∫ ln 

(
H 2 
H 1 

)
0 

2 exp [ −r ( T − t ) ] 

ln 

(
H 2 
H 1 

) (
e ξ H 1 − k 

)+ 
I [ A ( t ) <ξ<B ( t ) : t∈ [ 0 ,T ] ] ·

here A (t) = ln H 1 + (T − t)(r − σ 2 

2 ) and B (t) = ln H 2 + (T − t)(r −

. Exit times 

We recall some basic definitions: 

efinition 4.1. A measurable space { �, F } is said to be equipped w

ubsets of � such that F t ⊂ F and for every t 1 , t 2 ∈ [0 , + ∞ ) such th

-algebras of F ). 

efinition 4.2. Let us consider a measurable space { �, F } equipp

espect to the filtration { F t }, if for every t ≥ 0 { ω ∈ � | T ( ω) ≤ t } ∈ F t . 

Let Z t be the Geometric Brownian motion on S 1 and D ⊂ S 1 a d

 t = σ { Z s | 0 ≤ s ≤ t} , called the exit time on ∂D .(For more details 

.1. Expectations of exit times on S 1 

roposition 4.1. Let ϕ1 , ϕ2 ∈ (0, 2 π ], such that ϕ1 < ϕ2 , both fixed. 

rownian motion with drift on S 1 of radius a starting at the point ϕ ∈

 

ϕ [ T ] = 

2 

σ 2 −2 r 
·

(
ϕ 

σ2 −2 r 

σ2 

2 
−ϕ 

σ2 −2 r 

σ2 

1 

)
ln ϕ −

(
ϕ 

σ2 −2 r 

σ2 

2 
−ϕ 

σ2 −2 r 

σ2 

)
ln ϕ 1 −

(
(

ϕ 

σ2 −2 r 

σ2 

2 
−ϕ 

σ2 −2 r 

σ2 

1 

)
roof. Reminder. If u (x ) = E x [ T ] , then u ( x ) satisfies 

u (ϕ) = −1 

 | ∂D = 0 

(see [13] ) 

Hence from (2.18) the differential equation takes the form 

ϕ 

∂u 

∂ϕ 

+ 

σ 2 ϕ 

2 

2 

∂ 2 u 

∂ϕ 

2 
= −1 

ith boundary condition 

 ( ϕ 1 ) = u ( ϕ 2 ) = 0 

From (4.2) and (4.3) we imply that 

 ( ϕ ) = 

2 

σ 2 − 2 r 
·

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)
ln ϕ −

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
ln ϕ(

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)
i.e. 

 

ϕ [ T ] = 

2 

σ 2 − 2 r 
·

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)
ln ϕ −

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
ln ϕ(

σ2 −2 r 

σ2 
σ2 −2 r 

σ2 

)

ϕ 

2 
− ϕ 

1 
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 a double knock-out barrier at level H 1 = aϕ 1 and H 2 = aϕ 2 then if its 

0 | the option is killed } is 

 

−
(

x 
σ2 −2 r 

σ2 − H 

σ2 −2 r 

σ2 

1 

)
ln H 2 

(4.4) 

We consider the set D in S 1 , such that D = ( ϕ 1 , ϕ 2 ) . If Z t is the Geometric 

 D, and f be a function on ∂D , then the expectation of f ( Z t ) is given by 

(4.5) 

ferential equation 

(4.6) 

(4.7) 

�

. We consider the sets D 1 , D 2 in S 1 , such that D 1 = (ϕ 1 , 2 π ] and D 2 = 

adius a starting at the point ϕ ∈ D 1 ∩ D 2 . If 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
Based on the proof above, if Y t is the asset price and we have

price starts at the point x ∈ ( H 1 , H 2 ) the expectation of T = inf { t ≥

E x [ T ] = 

2 

σ 2 − 2 r 
·

(
H 

σ2 −2 r 

σ2 

2 
− H 

σ2 −2 r 

σ2 

1 

)
ln x −

(
H 

σ2 −2 r 

σ2 

2 
− x 

σ2 −2 r 

σ2 

)
ln H 1(

H 

σ2 −2 r 

σ2 

2 
− H 

σ2 −2 r 

σ2 

1 

)

4.2. Expectation of f ( Z t ) 

Proposition 4.2. Let ϕ 1 , ϕ 2 ∈ (0, 2 π ], such that ϕ 1 < ϕ 2 , both fixed. 

Brownian motion with drift on S 1 of radius a starting at the point ϕ ∈

E ϕ [ f ( Z t ) ] = 

f ( ϕ 2 ) 

(
ϕ 

σ2 −2 r 

σ2 − ϕ 

σ2 −2 r 

σ2 

1 

)
+ f ( ϕ 1 ) 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
(

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)

Proof. It is known that the function u ( ϕ ) = E ϕ [ Z t ] satisfies the dif

Lu (ϕ) = 0 

with boundary condition 

u | ∂D = f 

(see [12] ) 

Hence from (2.18) the differential equation takes the form 

rϕ 

∂u 

∂ϕ 

+ 

σ 2 ϕ 

2 

2 

∂ 2 u 

∂ϕ 

2 
= 0 

with boundary condition 

u ( ϕ 1 ) = f ( ϕ 1 ) and u ( ϕ 2 ) = f ( ϕ 2 ) 

From (4.6) and (4.7) we imply that 

u ( ϕ ) = 

f ( ϕ 2 ) 

(
ϕ 

σ2 −2 r 

σ2 − ϕ 

σ2 −2 r 

σ2 

1 

)
+ f ( ϕ 1 ) 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
(

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)

E ϕ [ f ( Z t ) ] = 

f ( ϕ 2 ) 

(
ϕ 

σ2 −2 r 

σ2 − ϕ 

σ2 −2 r 

σ2 

1 

)
+ f ( ϕ 1 ) 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
(

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)

4.3. Hitting probabilities 

Proposition 4.3. Let ϕ 1 , ϕ 2 ∈ (0, 2 π ], such that ϕ 1 < ϕ 2 , both fixed

(0 , ϕ 2 ) . Let Z t is the Geometric Brownian motion with drift on S 1 of r

T 1 = inf { t ≥ 0 | Z t / ∈ D 1 } 
T 2 = inf { t ≥ 0 | Z t / ∈ D 2 } 
and 

T = inf { t ≥ 0 | Z t / ∈ D 1 ∩ D 2 } 
then the probabilities Pr ϕ { T = T 1 } and Pr ϕ { T = T 2 } are given by 

ϕ 

Pr { T = T 1 } = 

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 
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a

P (4.12) 

P

2 r 
 

)+ ϕ 1 (ϕ 
σ2 −2 r 

σ2 
2 

−ϕ 
σ2 −2 r 

σ2 ) 

−2 r 
2 −ϕ 

σ2 −2 r 

σ2 

1 
) 

. 

E

a

P

P

a

P

�

ave a double knock-out Barrier at levels H 1 = aϕ 1 and H 2 = aϕ 2 then if 

i s killed because it reaches the barrier level H 1 is given as 

P (4.13) 

a r level H 2 is 

P (4.14) 

4

P We consider the set D on S 1 such that D = ( ϕ 0 , ϕ 1 ) . If Z t is the geometric 

B e expectation of exp ( −λT ) is given by 

E

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 ) 
2 +8 λσ2 

ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
 

 ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

 r−σ2 ) 
2 +8 λσ2 

2 ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 

E
 

) ϕ 

σ2 −2 r 

2 σ2 

1 , if λ = 

σ 2 − 2 r 

2 σ 2 
(4.15) 
nd 

ϕ 

r { T = T 2 } = 

ϕ 

σ2 −2 r 

σ2 − ϕ 

σ2 −2 r 

σ2 

1 

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

roof. From (4.5) for f (x ) = x we have E ϕ [ f (Z t )] = 

ϕ 2 (ϕ 
σ2 −2 r 

σ2 −ϕ 

σ2 −
σ2

1 

(ϕ 

σ2 

σ
2 

However, 

 

ϕ [ f (Z t )] = ϕ 1 

ϕ 

Pr { T = T 1 } + ϕ 2 

ϕ 

Pr { T = T 2 } 
nd 

ϕ 

r { T = T 1 } + 

ϕ 

Pr { T = T 2 } = 1 

Therefore, 

ϕ 

r { T = T 1 } = 

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

nd 

ϕ 

r { T = T 2 } = 

ϕ 

σ2 −2 r 

σ2 − ϕ 

σ2 −2 r 

σ2 

1 

ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

Based on the proof above, in case Y t is the asset price and we h

ts price starts at the point x ∈ ( H 1 , H 2 ) the probability the option i

x 

r { T = T 1 } = 

H 

σ2 −2 r 

σ2 

2 
− x 

σ2 −2 r 

σ2 

H 

σ2 −2 r 

σ2 

2 
− H 

σ2 −2 r 

σ2 

1 

nd the proability the option is killed because it reaches the barrie

x 

r { T = T 2 } = 

x 
σ2 −2 r 

σ2 − H 

σ2 −2 r 

σ2 

1 

H 

σ2 −2 r 

σ2 

2 
− H 

σ2 −2 r 

σ2 

1 

.4. Moment generating functions 

roposition 4.4. Let ϕ 0 , ϕ 1 ∈ (0, 2 π ], such that ϕ 0 < ϕ 1 both fixed. 

rownian motion on S 1 of radius a starting at the point ϕ ∈ D, then th

 

ϕ [ exp ( −λT ) ] 

= 

⎛ 

⎝ ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
− ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 

⎞ 

⎠ ϕ 

ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
− ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ

2 σ2 

1 

+ 

⎛ 

⎝ ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
− ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 

⎞
⎠

ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
− ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2
2 σ

1 

if λ > −
(
2 r − σ 2 

)2 

8 σ 2 

 

ϕ [ exp ( −λT ) ] = 

(
ϕ 

ϕ 1 ϕ 2 

) σ2 −2 r 

2 σ2 ( ln ϕ 2 − ln ϕ ) ϕ 

σ2 −2 r 

2 σ2 

2 
− ( ln ϕ − ln ϕ 1

ln ϕ 2 − ln ϕ 1 
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ln 

(
ϕ 2 
ϕ 

)]
ϕ 2 
ϕ 1 

)] + 

ϕ 

σ2 −2 r 

2 σ2 

1 
sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(
ϕ 
ϕ 1 

)]

sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(
ϕ 2 
ϕ 1 

)] (4.17) 

(4.18) 

chlet eigenvalue of D ⊂ S 1 . If u (x ) = E[ exp (−λT )] then u ( x ) satisfies 

f λ > − π2 

a 2 (ϕ 2 −ϕ 1 ) 
2 , then E ϕ [ exp (−λT )] satisfies the differential equation 

(4.19) 

(4.20) 

−σ2 ) 
2 +8 λσ2 

2 

⎞ 

⎠ ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

 

ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
 

( 2 r−σ2 ) 
2 +8 λσ2 

2 σ2 

⎞ 

⎠ ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 

, 

 

) ϕ 

σ2 −2 r 

2 σ2 

1 , if λ = 

σ 2 − 2 r 

2 σ 2 
(4.21) 

ln 

(
ϕ 2 
ϕ 

)]
ϕ 2 
ϕ 1 

)] + 

ϕ 

σ2 −2 r 

2 σ2 

1 
sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(
ϕ 
ϕ 1 

)]

sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(
ϕ 2 
ϕ 1 

)] (4.22) 

(4.23) 

r at levels H 1 = aϕ 1 and H 2 = aϕ 2 , then if its price starts at the point 

 r−σ2 ) 
2 +8 λσ2 

2 

⎞ 

⎠ x −
( 2 r−σ2 ) −

√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

 

H 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
 

( 2 r−σ2 ) 
2 +8 λσ2 

2 σ2 

⎞ 

⎠ H 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

H 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 H 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

, 
E ϕ [ exp ( −λT ) ] = 

(
ϕ 

ϕ 1 ϕ 2 

) σ2 −2 r 

2 σ2 

ϕ 

σ2 −2 r 

2 σ2 

2 
sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 

sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(

if λ < −
(
2 r − σ 2 

)2 

8 σ 2 

Proof. Reminder: Assume that λ > − λ1 
2 , where λ1 is the first Diri

Lu (ϕ) = λu (ϕ) with boundary conditions u | ∂D = 1 , (see [12] ) 

The first dirichlet eigenvalue of D ⊂ S 1 is λ = 

π2 

a 2 (ϕ 2 −ϕ 1 ) 
2 . Hence i

rϕ 

∂u 

∂ϕ 

+ 

σ 2 ϕ 

2 

2 

∂ 2 u 

∂ϕ 

2 
= λu ( ϕ ) 

with boundary condition 

u ( ϕ 1 ) = u ( ϕ 2 ) = 1 

This is a Cauchy–Euler equation. The solution is 

E ϕ [ exp ( −λT ) ] = 

⎛ 

⎝ ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
− ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r
2 σ

1 

ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
− ϕ 

−
1

+ 

⎛ 

⎝ ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
− ϕ 

− ( 2 r−σ2 ) −
√

2 

ϕ 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
ϕ 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
−

if λ > −
(
2 r − σ 2 

)2 

8 σ 2 

E ϕ [ exp ( −λT ) ] = 

(
ϕ 

ϕ 1 ϕ 2 

) σ2 −2 r 

2 σ2 ( ln ϕ 2 − ln ϕ ) ϕ 

σ2 −2 r 

2 σ2 

2 
− ( ln ϕ − ln ϕ 1

ln ϕ 2 − ln ϕ 1 

E ϕ [ exp ( −λT ) ] = 

(
ϕ 

ϕ 1 ϕ 2 

) σ2 −2 r 

2 σ2 

ϕ 

σ2 −2 r 

2 σ2 

2 
sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 

sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(

if λ < −
(
2 r − σ 2 

)2 

8 σ 2 

i.e. if Y t is the asset price and we have a double knock-out Barrie

x ∈ ( H 1 , H 2 ) 

E x [ exp ( −λT ) ] = 

⎛ 

⎝ H 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
− H 

− ( 2 r−σ2 ) + 
√ 
( 2
2 σ

1 

H 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
H 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

2 
− H 

−
1

+ 

⎛ 

⎝ H 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 

1 
− H 

− ( 2 r−σ2 ) −
√

2 

H 

− ( 2 r−σ2 ) −
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 H 

− ( 2 r−σ2 ) + 
√ 
( 2 r−σ2 ) 

2 +8 λσ2 

2 σ2 −

1 2 1 2 
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(4.24) 

E
 

H 

σ2 −2 r 

2 σ2 

1 , if λ = 

σ 2 − 2 r 

2 σ 2 
(4.25) 

E

n 

(
H 2 
x 

)]
H 2 
H 1 

)] + 

H 

σ2 −2 r 

2 σ2 

1 
sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(
x 

H 1 

)]

sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(
H 2 
H 1 

)] (4.26) 

i (4.27) 

�

5

D We consider the set D in S 1 such that D = ( ϕ 0 , ϕ 1 ) . The Reflected Geo- 

m is L in D with Neuman boundary condition at ∂D . 

es the boundary it is reflected back in D . 

D D . If Y t is the Reflected Geometric Brownian motion in D , and D δ the 

d

D

w

L

5

P . We consider the set D in S 1 such that D = (ϕ 1 , ϕ 2 ) . Let W t be the The 

R . If 

T

a

E

λ (5.1) 

a

E (5.2) 

P the differential equation 

L (5.3) 

w

if λ > −
(
2 r − σ 2 

)2 

8 σ 2 

 

x [ exp ( −λT ) ] = 

(
x 

H 1 H 2 

) σ2 −2 r 

2 σ2 ( ln H 2 − ln x ) H 

σ2 −2 r 

2 σ2 

2 
− ( ln x − ln H 1 )

ln H 2 − ln H 1 

 

x [ exp ( −λT ) ] = 

(
x 

H 1 H 2 

) σ2 −2 r 

2 σ2 

H 

σ2 −2 r 

2 σ2 

2 
sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 l

sin 

[√ 

−
(
2 r − σ 2 

)2 − 8 λσ 2 ln 

(

f λ < −
(
2 r − σ 2 

)2 

8 σ 2 

. Local time estimation 

efinition 5.1. Let ϕ 0 , ϕ 1 ∈ (0, 2 π ], such that ϕ 0 < ϕ 1 both fixed. 

etric Brownian motion in D is the diffusion W t whose generator 

Roughly speaking W t behaves like Z t inside D but when it reach

efinition 5.2. Let a fixed open set D ⊂ S 1 with C 3 −boundary ∂
omain 

 δ = { x ∈ D | d ( x, ∂D ) < δ} 
e define the boundary local time L t of W t as 

 t = lim 

δ→ 0 

1 

2 δ

∫ t 

0 

1 D δ ( W s ) ds 

It can be shown that the limit exists in L 2 sense. 

.1. Boundary local time until first hitting 

roposition 5.1. Let ϕ 1 , ϕ 2 ∈ (0, 2 π ], such that ϕ 1 < ϕ 2 both fixed

eflected Geometric Brownian motion on D starting at the point ϕ ∈ D

 = inf { t ≥ 0 | Z t = ϕ 1 } 
nd L t is the boundary local time of W t , then 

 

ϕ [ exp ( λL t ) ] = 

(
σ 2 − 2 r 

)
ϕ 

− 2 r 

σ2 

2 
− λσ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
(
σ 2 − 2 r 

)
ϕ 

− 2 r 

σ2 

2 
− λσ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

) , if 

< 

(
σ 2 − 2 r 

)
ϕ 

− 2 r 

σ2 

2 

σ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)
nd 

 

ϕ [ exp ( λL t ) ] = + ∞ , if λ ≥
(
σ 2 − 2 r 

)
ϕ 

− 2 r 

σ2 

2 

σ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

)
roof. It is known that the function Z ( ϕ ) = E ϕ [ exp ( λL t ) ] satisfies 

z = 0 

ith boundary conditions 
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z ( ϕ 1 ) = 1 (5.4)

and 

− dz 

dϕ 

( ϕ 2 ) + λz ( ϕ 2 ) = 0 (5.5)

as long as the function z is positive (see [14] ) 

Thus 

z ( ϕ ) = 

(
σ 2 − 2 r 

)
ϕ 

− 2 r 

σ2 

2 
− λσ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
(
σ 2 − 2 r 

)
ϕ 

− 2 r 

σ2 

2 
− λσ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

1 

) (5.6)

However z( ϕ) > 0 for every ϕ ∈ ( ϕ1 , ϕ2 ) if and only if λ <

(σ 2 −2 r) ϕ 
− 2 r 

σ2 

2 

σ 2 

( 
ϕ 

σ2 −2 r 

σ2 

2 
−ϕ 

σ2 −2 r 

σ2 

1 

) . Therefore 

E ϕ [ exp (λL t )] = 

(σ 2 − 2 r) ϕ 

− 2 r 

σ2 

2 
− λσ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 

)
(
σ 2 − 2 r 

)
ϕ 

− 2 r 

σ2 

2 
− λσ 2 

(
ϕ 

σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 
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σ 2 − 2 r 
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σ 2 

(
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σ2 −2 r 

σ2 

2 
− ϕ 

σ2 −2 r 

σ2 
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)
and 

E ϕ [ exp ( λL t ) ] = + ∞ , if λ ≥
(
σ 2 − 2 r 

)
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− 2 r 

σ2 
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σ 2 

(
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σ2 −2 r 

σ2 

2 
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σ2 −2 r 

σ2 

1 

)
�

As a consequence of the proof, if we set ˜ λ = aλ, Y t the asset

price and we consider the double knock-out barrier at levels H 1 =
aϕ 1 and H 2 = aϕ 2 then if its price starts at the point x ∈ ( H 1 , H 2 ),

then the expectation is given as 

E x 
[
exp 

(
˜ λL t 
)]

= 

(
σ 2 − 2 r 

)
H 

− 2 r 

σ2 

2 
− ˜ λσ 2 

(
H 

σ2 −2 r 

σ2 

2 
− x 

σ2 −2 r 

σ2 

)
(
σ 2 − 2 r 

)
H 

− 2 r 

σ2 

2 
− ˜ λσ 2 

(
H 

σ2 −2 r 

σ2 

2 
− H 

σ2 −2 r 

σ2 

1 

) , i f 

˜ λ < 

(
σ 2 − 2 r 

)
H 

− 2 r 

σ2 

2 

σ 2 

(
H 

σ2 −2 r 

σ2 

2 
− H 

σ2 −2 r 

σ2 

1 

)
and 
 

x 
[
exp 

(
˜ λL t 
)]

= + ∞ , if ˜ λ ≥
(
σ 2 − 2 r 

)
H 

− 2 r 

σ2 

2 

σ 2 

(
H 

σ2 −2 r 

σ2 

2 
− H 

σ2 −2 r 

σ2 

1 

)
here L t is the boundary local time of the option price. 

. Conclusion 

Our novel methodology is not restricted to underlying processes

hich are geometric Brownian motions on S 1 . Any other form of

nderlying process can be used, provided that there exists a trans-

ormation between the process and standard Brownian motion on

 

1 . Moreover, we can easily extend all the above results on spheres

f higher dimensions. Our approach can be applied to the valu-

tion of other exotic derivatives as well as to other mathematical

roblems. For example, Brownian motions on S 2 can be utilized for

ther types of derivatives’ pricing in financial literature, epidemi-

logical models and enviromental pollution models among other.

lso for n = 3 , S 3 some results appear in relativity theory [15] .

e contributed in a plethora of ways. In particular, we presented

ew ways of estimating the expectation of the time the options

eize to exist, their hitting probabilities, the exit times and their

xpectations, boundary local times until the first hitting and other

robabilistic quantities related to the boundary local times. We de-

iver closed-form solutions which maybe of immense importance

o traders, investors, speculators and more broadly to financial in-

titutions. 
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Abstract

We evaluate explicity certain quantities regarding the Brownian mo-
tion process on the n-dimensional sphere of radius a. First we review the
transition densities of the process. Then we calculate some probabilistic
quantities (e.g. moments) of the exit times of specific domains.
Key word and phrases: n-dimensional sphere, stereographic projection
coordinates, Brownian motion, exit times, transition densities, reflection
principle

1 Introduction

1.1 The n-Sphere

Let n ∈ N = {1, 2, 3, . . .}. The n-dimensional sphere Sn with center (c1, ..., cn+1)
and radius a > 0 is the set of all points x ∈ Rn+1 satisfying

(x1 − c1)2 + · · ·+ (xn+1 − cn+1)2 = a2.

The most interesting case in applications is, of course, the case n = 2. For the
sake of comparison we will also discuss the cases n = 1 (i.e. the circle) and
n = 3. In some cases we will even consider the case of general n.

1.2 Stereographic Projection Coordinates

Consider the n-sphere, n ≥ 2,

x2
1 + · · ·+ x2

n + (xn+1 − a)2 = a2.

To each point (x1, ..., xn, xn+1) of this sphere, other than its “north pole” N =
(0, ..., 0, 2a) we associate the coordinates

ξ1 =
2ax1

2a− xn+1
, . . . , ξn =

2axn
2a− xn+1

.
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Given the coordinates (ξ1, ..., ξn) of a point on the sphere with Cartesian coor-
dinates (x1, ..., xn, xn+1), we have

x1 =
4a2ξ1

ξ2
1 + · · ·+ ξ2

n + 4a2
, . . . , xn =

4a2ξn
ξ2
1 + · · ·+ ξ2

n + 4a2
, xn+1 =

2a
(
ξ2
1 + · · ·+ ξ2

n

)
ξ2
1 + · · ·+ ξ2

n + 4a2
.

1.3 Spherical Coordinates

The points of the n-sphere

x2
1 + · · ·+ x2

n + x2
n+1 = a2

may also be described in spherical coordinates (θ1, ..., θn−1, ϕ) as follows:

• For n = 1, x1 = a cosϕ, x2 = a sinϕ, where 0 ≤ ϕ < 2π.

• In general for n ≥ 2
x1 = a cos θ1

∏n
i=1 sin θi, x2 = a

∏n
i=2 sin θi, xk = a cos θk−1

∏n
i=k sin θi,

for k = 3, 4, ..., n
and xn+1 = a cos θn, where 0 ≤ θ1 < 2π, 0 ≤ θi ≤ π,
for i = 2, 3, ..., n,

1.4 The Laplace-Beltrami Operator

In spherical coordinates: The Laplace-Beltrami operator of a smooth function

f on S1 is

∆1f =
1

a2

∂2f

∂ϕ2
. (1.1)

The Laplace-Beltrami operator of a smooth function f on S2 is

∆2f =
1

a2 sinϕ

(
fθθ

sinϕ
+ fϕ cosϕ+ fϕϕ sinϕ

)
. (1.2)

The Laplace-Beltrami operator of a smooth function f on S3 is

∆3f =
1

a2 sin2 ϕ

[
1

sin2 θ2

· ∂
2f

∂θ2
1

+
1

sin θ2
· ∂

∂θ2

(
∂f

∂θ2
sin θ2

)
+

∂

∂ϕ

(
∂f

∂ϕ
sin2 ϕ

)]
(1.3)

In stereographic projection coordinates: The Laplace-Beltrami operator of a
smooth function f on Sn, n ≥ 2 is

∆nf =

(
ξ2
1 + · · ·+ ξ2

n + 4a2
)2

16a4

[
n∑
i=1

∂2f

∂ξ2
i

− 2(n− 2)

(ξ2
1 + · · ·+ ξ2

n + 4a2)

n∑
i=1

ξi
∂f

∂ξi

]
.

(1.4)
In particular, for n = 2 we get

∆2f =

(
ξ2
1 + ξ2

2 + 4a2
)2

16a4

(
∂2f

∂ξ2
1

+
∂2f

∂ξ2
2

)
. (1.5)

2
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1.5 Brownian Motion on Sn

The Brownian motion on Sn , starting from x ∈ Sn, is a diffusion (Markov)
process Xt, t ≥ 0, on Sn whose transition density is a function P (t, x, y) on
(0,∞)× Sn × Sn satisfying

∂P

∂t
=

1

2
∆nP (1.6)

P (t, x, y)→ δx(y) as t→ 0+, (1.7)

where ∆n is the Laplace-Beltrami operator of Sn acting on the x-variables and
δx(y) is the delta mass at x, i.e. P (t, x, y) is the heat kernel of Sn. The heat
kernel exists, it is unique, positive, and smooth in (t, x, y) [2].

1.5.1 Further Properties of the Heat Kernel P (t, x, y)

It is well known that P (t, x, y) satisfies the following properties [2]

1. Symmetry: P (t, x, y) = P (t, y, x).

2. The semigroup identity: For any s ∈ (0, t),

P (t, x, y) =

∫
Sn
P (s, x, z)P (t− s, z, y)dµ(z)

where dµ is the n-th dimensional surface area.

3. For all t > 0 and x ∈ Sn ∫
Sn
P (t, x, y)dµ(y) = 1.

4. As t→∞, P (t, x, y) approaches the uniform density on Sn, i.e.

lim
t→∞

P (t, x, y) =
1

An
,

where An is nth dimensional surface area of Sn with radius a. It is well
known that [3]

A2k+1 =
2πk+1a2k+1

(k)!
, and A2k =

22k(k − 1)!πka2k

(2k − 1)!
, k ∈ N

Finally, the symmetry of Sn implies that P (t, x, y) depends only on t and d(x, y),
the distance between x and y. Thus in spherical coordinates it depends on t
and the angle ϕ between x and y. Hence

P (t, x, y) = p(t, ϕ),

where p(t, ϕ) satisfies

∂p

∂t
=

1

2
∆np =

1

2a2

[
(n− 1) cotϕ · ∂p

∂ϕ
+
∂2p

∂ϕ2

]
(1.8)

and
lim
t→0+

aAn−1p(t, ϕ) · sinn−1 ϕ = δ(ϕ). (1.9)

Here δ(·) is the standard Dirac delta function on R.

3
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2 Explicit Form of the Heat Kernel

Reminder (Poisson Summation Formula). Let f(x) be a function in the
Schwartz space S(R), where S(R) consists of the set of all infinitely differentiable
functions f on R so that f and all its derivatives f (l) are rapidly decreasing, in
the sense that

sup
x∈R
|x|k

∣∣∣f (l)(x)
∣∣∣ <∞ for every k, l ≥ 0.

Then ∑
n∈Z

f(x+ 2πn) =
1

2π

∑
n∈Z

F (n) exp(inx),

where F (ξ) is the Fourier transform of f(x), i.e.

F (ξ) =

∫ +∞

−∞
f(x) exp(−iξx)dx, ξ ∈ R.

2.1 The Case of S1

Proposition 2.1 The transition density function of the Brownian motion Xt, t ≥
0 on S1 with radius a is the function

p(t, ϕ) =
1

2πa

∑
n∈Z

exp

(
−n

2t

2a2
+ inϕ

)
=

1

πa

∑
n∈N

[
exp

(
−n

2t

2a2

)
cos(nϕ)

]
− 1

2πa
,

(2.1)
equivalently

p(t, ϕ) =
1√
2πt

∑
n∈Z

exp

(
−a

2

2t
(ϕ− 2πn)

2

)
. (2.2)

For the proof see [5].

2.2 The Case of S2

We remind the reader of Legendre Polynomials Pn(x), n = 0, 1, 2, ... since
we are going to use them later in the paper

Pn(x) =
1

2nn!
· d

n

dxn

[(
x2 − 1

)n]
.

Proposition 2.2 The transition density function of the Brownian motion Xt,
t ≥ 0 on S2 with radius a is given by the function

p(t, ϕ) =
1

4πa2

∑
n∈N

(2n+ 1) exp

(
−n(n+ 1)

√
t

a

)
Pn(cosϕ). (2.3)

For the proof see [1] or [5].

4
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2.3 The Case of S3

Proposition 2.3 Let Xt, t ≥ 0 be the Brownian motion on a 3-dimensional
sphere S3 of radius a. The transition density function p(t, ϕ) of Xt is given by

p(t, ϕ) =
exp

(
t

2a2

)
(2πt)3/2 sinϕ

∑
n∈Z

(ϕ+ 2nπ) exp

(
− (ϕ+ 2nπ)2a2

2t

)
, (2.4)

where Z is the set of all integers. Equivalently,

p(t, ϕ) = − i

4π2a3 sinϕ

∑
n∈Z

n exp

(
− t(n

2 − 1)

2a2
+ iϕn

)
, (2.5)

p(t, ϕ) =
1

2π2a3 sinϕ

∑
n∈N

n sin(nϕ) exp

(
− t(n

2 − 1)

2a2

)
. (2.6)

The function p(t, ϕ) is analytic at ϕ = 0 and ϕ = π. In fact

p(t, 0) = lim
ϕ→0+

p(t, ϕ) =
1

2π2a3

∑
n∈N

n2 exp

(
− t(n

2 − 1)

2a2

)
and

p(t, π) = lim
ϕ→π−

p(t, ϕ) =
1

2π2a3

∑
n∈N

n2(−1)n exp

(
− t(n

2 − 1)

2a2

)
.

For the proof see [5].

Reminder. The ϑ3 function of Jacobi is

ϑ3(z, r) = 1 + 2
∞∑
n=0

exp
(
iπrn2

)
cos(2nz),

where r ∈ C, with Im {r} > 0. It follows that

p(t, ϕ) = − 1

4π2a3 sinϕ
exp

(
t

2a2

)
∂

∂ϕ
ϑ3

(
ϕ

2
,
ti

2a2π

)
.

3 Expectations of Exit Times

Let Xt be the Brownian motion in Sn and D a Borel subset of Sn. The random
variable

T = inf{ t ≥ 0| Xt /∈ D}

is called the (first) exit time of D.
Reminder. If u(x) = Ex[T ], then u(x) satisfies

1

2
∆nu = −1, u|∂D = 0 (3.1)

(see, e.g., [8])

5
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Proposition 3.1 We consider the 2-dimensional sphere S2 of radius a. Let
two circles pass through the North pole, such that in stereographic coordinates
are represented by the parallel lines ξ1 = b and ξ2 = c, where b, c ∈ R, say
b < c. We consider the set D in S2, whose stereographic projection is

D = {(ξ1, ξ2) | ξ1 ∈ R and ξ2 ∈ (b, c)} .

Of course

∂D = {(ξ1, ξ2) | ξ1 ∈ R and ξ2 = b or ξ2 = c} .

If Xt is the Brownian motion on S2 of radius a starting at the point A, where
the stereogrpaphic projection coordinates of A are (ξ1, ξ2) ∈ D and

T = inf {t ≥ 0 |Xt ∈ D} ,

then
EA[T ] = f(ξ1, ξ2)− 2a2 ln

(
ξ2
1 + ξ2

2 + 4a2
)
, (3.2)

where

f(ξ1, ξ2) =
1

π

∫ ∞
0

 g(η, c) exp
(
πξ1
c−b

)
sin
(
π(ξ2−b)
c−b

)
exp

(
2πξ1
c−b

)
sin2

(
π(ξ2−b)
c−b

)
+
(

exp
(
πξ1
c−b

)
cos
(
π(ξ2−b)
c−b

)
+ η
)2

 dη

+
1

π

∫ ∞
0

 g(η, b) exp
(
πξ1
c−b

)
sin
(
π(ξ2−b)
c−b

)
exp

(
2πξ1
c−b

)
sin2

(
π(ξ2−b)
c−b

)
+
(

exp
(
πξ1
c−b

)
cos
(
π(ξ2−b)
c−b

)
− η
)2

 dη
(3.3)

and

g(ξ, t) = 2a2 ln

[
(c− b)2 ln2 |ξ|

π2
+ t2 + 4a2

]
. (3.4)

Proof

The function
EA[T ] = U(ξ1, ξ2)

satisfies the differential equation

1

2
∆2U = −1

with boundary conditions

U(ξ1, b) = U(ξ1, c) = 0.

Here ∆2 is the Laplace-Beltrami operator on S2 expressed in the stereo-
graphic projection coordinates (see (1.5)). Hence the differential equation takes
the form

∂2U

∂ξ2
1

+
∂2U

∂ξ2
2

= − 32a4

(ξ2
1 + ξ2

2 + 4a2)
2 . (3.5)
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However the function

U1(ξ1, ξ2) = −2a2 ln(ξ2
1 + ξ2

2 + 4a2)

satisfies the differential equation (3.5). Thus

U(ξ1, ξ2) = −2a2 ln(ξ2
1 + ξ2

2 + 4a2) + f(ξ1, ξ2), (3.6)

where f(ξ1, ξ2) satisfies
∂2f

∂ξ2
1

+
∂2f

∂ξ2
2

= 0,

with boundary conditions

f(ξ1, b) = 2a2 ln(ξ2
1 + b2 + 4a2) and f(ξ1, c) = 2a2 ln(ξ2

1 + c2 + 4a2). (3.7)

If we make the change of variables x = ξ1 and y = ξ2 − b and set the
function φ(x, y) = f(ξ1, ξ2), then φ(x, y) satisfies

∂2φ

∂x2
+
∂2φ

∂y2
= 0,

with boundary conditions

φ(x, 0) = 2a2 ln(x2 + b2 + 4a2) and φ(x, β) = 2a2 ln(x2 + c2 + 4a2),

where β = c− b.
Now let z = x+yi and w = exp

(
πz
β

)
, i.e. z = β lnw

π . Thus, if w = u+vi, u, v ∈
R then

u = exp

(
πx

β

)
cos

(
πy

β

)
and v = exp

(
πx

β

)
sin

(
πy

β

)
. (3.8)

Introducing the function ψ(u, v) = φ(x, y), it follows that ψ(u, v) satisfies

∂2ψ

∂ u2
+
∂2ψ

∂ v2
= 0,

with boundary conditions

ψ(u, 0) = 2a2 ln

(
β2 ln2 u

π2
+ b2 + 4a2

)
for u > 0,

and

ψ(u, 0) = 2a2 ln

(
β2 ln2 |u|

π2
+ c2 + 4a2

)
, for u < 0.

This is the standard Dirichlet boundary value problem for the half plane and it
is well known [6] that its solution is given by the Poisson integral formula for
the half-plane:

ψ(u, v) =
1

π

∫ ∞
−∞

vψ(ξ, 0)

v2 + (u− ξ)2
dξ,

or

ψ(u, v) =
1

π

∫ 0

−∞

vg(ξ, c)

v2 + (u− ξ)2
dξ +

1

π

∫ ∞
0

vg(ξ, b)

v2 + (u− ξ)2
dξ,

7
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where

g(ξ, t) = 2a2 ln

(
β2 ln2 |ξ|

π2
+ t2 + 4a2

)
.

Notice that g(−ξ, t) = g(ξ, t). Hence

ψ(u, v) =
1

v
π

∫ ∞
0

(
g(ξ, c)

v2 + (u+ ξ)2
+

g(ξ, b)

v2 + (u− ξ)2

)
dξ,

where u, v are given in (3.8). Therefore

φ(x, y) =
1

π
exp

(
πx

β

)
sin

(
πy

β

)∫ ∞
0

 g(η, c)

exp
(

2πx
β

)
sin2

(
πy
β

)
+
(

exp
(
πx
β

)
cos
(
πy
β

)
+ η
)2



+
1

π
exp

(
πx

β

)
sin

(
πy

β

)∫ ∞
0

 g(η, b)

exp
(

2πx
β

)
sin2

(
πy
β

)
+
(

exp
(
πx
β

)
cos
(
πy
β

)
− η
)2

 dη,

i.e.

f(ξ1, ξ2) =
1

π

∫ ∞
0

 g(η, c) exp
(
πξ1
c−b

)
sin
(
π(ξ2−b)
c−b

)
exp

(
2πξ1
c−b

)
sin2

(
π(ξ2−b)
c−b

)
+
(

exp
(
πξ1
c−b

)
cos
(
π(ξ2−b)
c−b

)
+ η
)2

 dη

+
1

π

∫ ∞
0

 g(η, b) exp
(
πξ1
c−b

)
sin
(
π(ξ2−b)
c−b

)
exp

(
2πξ1
c−b

)
sin2

(
π(ξ2−b)
c−b

)
+
(

exp
(
πξ1
c−b

)
cos
(
π(ξ2−b)
c−b

)
− η
)2

 dη.
Therefore

EA[T ] = f(ξ1, ξ2)− 2a2 ln
(
ξ2
1 + ξ2

2 + 4a2
)
.

�

4 Hitting Probabilities

Let Xt be the Brownian motion in Sn, D ⊂ Sn, and T its exit time.
Reminder. If Γ ⊂ ∂D and u(x) = P x{XT ∈ Γ} then [4] u(x) satisfies

∆nu = 0, u|Γ = 1, u|∂D\Γ = 0.

Proposition 4.1 We consider the 2-dimensional sphere S2 of radius a. Let two
circles passing through the North Pole, such that in stereographic coordinates are
represented by the parallel lines ξ2 = b and ξ2 = c, where b, c ∈ R, with b < c.
We consider the sets D1, D2 in S2, whose stereographic projection are

D1 = { (ξ1, ξ2) | ξ1 ∈ R, ξ2 ∈ (b,+∞)} and D2 = { (ξ1, ξ2) | ξ1 ∈ R, ξ2 ∈ (−∞, c)} .

Of course,

∂D1 = { (ξ1, ξ2) | ξ1 ∈ R, ξ2 = b} and ∂D2 = { (ξ1, ξ2) | ξ1 ∈ R, ξ2 = c} .

8
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Let Xt is the Brownian motion on S2 of radius a starting at the point
A, where the stereographic projection coordinate of A are

(ξ1, ξ2) ∈ D1 ∩D2.

If
T1 = inf {t ≥ 0 | Xt /∈ D1 } , T2 = inf {t ≥ 0 | Xt /∈ D2 }

and
T = inf {t ≥ 0 | Xt /∈ D1 ∩D2 } ,

then

PA {T = T1} =
c− ξ2
c− b

and PA {T = T2} =
ξ2 − b
c− b

. (4.1)

Proof
The function

u(ξ1, ξ2) = PA {T = T1}

is the unique solution of the differential equation

1

2
∆2u = 0,

or (see (1.5))
∂2u

∂ξ2
1

+
∂2u

∂ξ2
2

= 0, (4.2)

with boundary conditions

u(ξ1, b) = 1 and u(ξ1, c) = 0. (4.3)

Since (4.2)-(4.3) has a unique solution, (4.1) follows immediately. �

Remark 4.1 In stereographic coordinates a function is harmonic with respect
to ∆2, (the Laplace-Beltrami operator of S2), if and only if it is harmonic
with respect to the standard Euclidean Laplacian. This fact is not true for
Sn, n ≥ 3.

5 Reflection Principle on Sn and Applications

The following notation will be used in Theorem 5.1.

Definition 5.1 For every A = (x1, x2, . . . , xn+1) ∈ Sn we denote by Â the
point (x1, x2, . . . ,−xn+1) ∈ Sn, namely the symmetric of A with respect
to the (x1, x2, . . . , xn)-hyperplane.

Theorem 5.1 Let Xt, t ≥ 0 be the Brownian motion on a n-dimensional
sphere (n ≥ 2), Sn of radius a starting at the point

A = (θ1, . . . , θn, ϕ) ∈ D,

9
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where

D = {(θ1, . . . , θn−1, ϕ) ∈ Sn| θ1 ∈ [0, 2π), θi ∈ [0, π] for i = 2, . . . , n−1 and ϕ ∈
( π

2
, π
]}

.

If
T = inf { t ≥ 0| Xt /∈ D} ,

then
PA {T < t} = 2PA {Xt /∈ D} . (5.1)

Proof.

PA {T < t} = PA {T < t,Xt /∈ D}+ PA {T < t,Xt ∈ D} . (5.2)

However, if Xt /∈ D then of course T < t. Thus,

PA {T < t,Xt /∈ D} = PA {Xt /∈ D} . (5.3)

On the other hand, if we set

X̃t =

{
Xt, if t ≤ T ;

X̂t, if t > T,

where X̂t is given by Definition 5.1, then by the strong Markov property of
Xt, Xt and X̃t have the same law. Hence,

PA {T < t,Xt ∈ D} = PA
{
T < t, X̃t ∈ D

}
,

but if X̃t ∈ D then Xt /∈ D. Hence,

PA
{
T < t, X̃t ∈ D

}
= PA {T < t,Xt /∈ D} ,

or
PA

{
T < t, X̃t ∈ D

}
= PA {Xt /∈ D} . (5.4)

Therefore from (5.2), (5.3) and (5.4) we obtain that

PA {T < t} = 2PA {Xt /∈ D} .

�
In the case of S1 we can prove the next result in a similar manner.

Theorem 5.2 Let Xt, t ≥ 0 be the Brownian motion on a 1-dimensional
sphere S1 of radius a starting at the point ϕ ∈ D, where

D = (π, 2π).

If
T = inf { t ≥ 0| Xt /∈ D} ,

then
Pϕ {T < t} = 2Pϕ {Xt /∈ D} . (5.5)

10
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5.0.1 Applications of the Reflection Principle

The reflection principle can help to calculate the distribution functions of cer-
tain exit times.

The case of S1

Let Xt be the Brownian motion on a 1-dimensional sphere S1 of radius
a starting at the point ϕ. If D = (π, 2π) , then

P {Xt /∈ D} =

∫ π

0

a · p(t, x− ϕ)dx =

∫ π−ϕ

−ϕ
a · p(t, y)dy,

where p(t, ϕ) is the transition density function of the Brownian motion on S1

of radius a. Hence, form (2.1)

P {Xt /∈ D} =

∫ π−ϕ

−ϕ
a

[
1

πa

∑
n∈N

(
exp

(
−n

2t

2a2

)
cos(ny)

)
− 1

2πa

]
dy,

or

P {Xt /∈ D} = −1

2
+

1

π

∑
n∈N

[
exp

(
−n

2t

2a2

)∫ π−ϕ

−ϕ
cos(ny)dy

]
.

Therefore,

P {Xt /∈ D} =
1

2
+

1

π

∑
n∈N∗

[
exp

(
−n

2t

2a2

)
sin(nπ − nϕ) + sin(nϕ)

n

]
,

i.e.

P {Xt /∈ D} =
1

2
+

1

π

∑
n∈N∗

[
exp

(
−n

2t

2a2

)
sin(nϕ) (1− (−1)n)

n

]
.

Thus

P {Xt /∈ D} =
1

2
+

2

π

∑
n odd

exp
(
−n2t

2a2

)
sin(nϕ)

n

 .

It follows (by using Theorem 5.2) that, if T = inf{t ≥ 0| Xt /∈ D}, then

Pϕ {T < t} = 1 +
4

π

∑
n odd

1

n
exp

(
−n

2t

2a2

)
sin(nϕ). (5.6)

for every ϕ ∈ (π, 2π).

The case of S2

Let Xt be the Brownian motion on a 2-dimensional sphere S2 of radius
a starting at the point N(0, 0) in spherical coordinates. If

D =
{

(θ, ϕ) ∈ S2
∣∣ θ ∈ [0, 2π), ϕ ∈

(π
2
, π
]}

then

PN{Xt /∈ D} =

∫ π
2

0

∫ 2π

0

p(t, ϕ)a2 sin(ϕ)dθdϕ,

11
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i.e.

PN{Xt /∈ D} = 2πa2

∫ π
2

0

p(t, ϕ) sin(ϕ)dϕ,

where p(t, ϕ) is the transition density function of the Brownian motion on
S2 of radius a. Hence from (2.3)

PN{Xt /∈ D} = 2πa2

∫ π
2

0

1

4πa2
sinϕ

∑
n∈N

(2n+1) exp

(
−n(n+ 1)

√
t

a

)
Pn(cosϕ)dϕ,

or

PN{Xt /∈ D} =
1

2
+

1

2

∑
n∈N∗

(2n+1) exp

(
−n(n+ 1)

√
t

a

)∫ π
2

0

Pn(cosϕ) sin(ϕ)dϕ.

(5.7)
However for every n ∈ N∗

I =

∫ π
2

0

Pn(cosϕ) sin(ϕ)dϕ =

∫ 1

0

Pn(x)dx.

It is known that (see [7])

Pn(x) =
1

2n+ 1
[Pn+1(x)− Pn−1(x)] .

Thus

I =
1

2n+ 1
(Pn+1(1)− Pn−1(1)− Pn+1(0) + Pn−1(0)) ,

or

I =
1

2n+ 1
(Pn−1(0)− Pn+1(0)) .

It is also known that for every n ∈ N∗

P2n(0) = (−1)n
(2n)!

22n(n!)2
and P2n+1(0) = 0.

Thus, if n is even then I = 0.
If n is odd, i.e. n = 2k + 1, then

I =
1

4k + 3

(
P2k(0)− P2(n+1)(0)

)
,

i.e.

I =
(−1)n(2k)!(2k + 3)

(4k + 3)22k+1k!
. (5.8)

From (5.7) and (5.8) we obtain that

PN{Xt /∈ D} =
1

2
+

1

2

∑
n∈N

(−1)n exp

(
− (2n+ 1)(2n+ 1)

√
t

a

)
· (2n)!(2n+ 3)

22n+1n!
.

(5.9)
Furthermore, if S(0, π) namely the south pole of S2, then

PS{Xt /∈ D} = PN{X̂t /∈ D} = PN{Xt ∈ D} = 1− PN{Xt /∈ D}.

12
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Therefore,

PS{Xt /∈ D} =
1

2
− 1

2

∑
n∈N

(−1)n exp

(
− (2n+ 1)(2n+ 1)

√
t

a

)
· (2n)!(2n+ 3)

22n+1n!
.

(5.10)
Theorem 5.1 implies that, if T = inf { t > 0 | Xt /∈ D} , then

PS{T < t} = 1−
∑
n∈N

(−1)n exp

(
− (2n+ 1)(2n+ 1)

√
t

a

)
· (2n)!(2n+ 3)

22n+1n!
. (5.11)

The case of S3

Let Xt be the Brownian motion on a 3-dimensional sphere S3 of radius
a starting at the point N(0, 0, 0) in spherical coordinates. If

D =
{

(θ1, θ2, ϕ) ∈ S3
∣∣ θ1 ∈ [0, 2π), θ2 ∈ [0, π], ϕ ∈

(π
2
, π
]}

then

PN{Xt /∈ D} =

∫ π
2

0

∫ π

0

∫ 2π

0

p(t, ϕ)a3 sin θ2 sin2(ϕ)dθ1dθ2dϕ,

i.e.

PN{Xt /∈ D} = 4πa3

∫ π
2

0

p(t, ϕ) sin2(ϕ)dϕ,

where p(t, ϕ) is the transition density function of the Brownian motion on
S3 of radius a. Hence from (2.6)

PN{Xt /∈ D} = 4πa3

∫ π
2

0

sin2(ϕ)
1

2π2a3 sin(ϕ)

∑
n∈N

n sin(nϕ) exp

(
− t(n

2 − 1)

2a2

)
dϕ,

or

PN{Xt /∈ D} =
2

π

∑
n∈N

n exp

(
− t(n

2 − 1)

2a2

)∫ π
2

0

sin(ϕ) sin(nϕ)dϕ. (5.12)

Let us call

I =

∫ π
2

0

sin(ϕ) sin(nϕ)dϕ.

If n = 1, then I = π
4 . If n > 1, then

I = −
n cos

(
nπ
2

)
n2 − 1

.

Thus from (5.12),

PN{Xt /∈ D} =
1

2
− 2

π

∞∑
n=2

n2 exp

(
− t(n

2 − 1)

2a2

)
cos
(nπ

2

)
.

However, cos
(
nπ
2

)
= 0 for every n odd, hence

PN{Xt /∈ D} =
1

2
− 2

π

∑
n even

n2 exp

(
− t(n

2 − 1)

2a2

)
cos
(nπ

2

)
,

13
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or

PN{Xt /∈ D} =
1

2
− 8

π

∑
n∈N∗

(−1)nn2 exp

(
− t(4n

2 − 1)

2a2

)
. (5.13)

Furthermore, if S = (0, 0, π) then,

PS{Xt /∈ D} = PN{X̂t /∈ D} = PN{Xt ∈ D} = 1− PN{Xt /∈ D}.

Therefore,

PS{Xt /∈ D} =
1

2
+

8

π

∑
n∈N∗

(−1)nn2 exp

(
− t(4n

2 − 1)

2a2

)
. (5.14)

Theorem 5.1 implies that, if T = inf { t > 0 | Xt /∈ D} , then

PS{T < t} = 1 +
16

π

∑
n∈N∗

(−1)nn2 exp

(
− t(4n

2 − 1)

2a2

)
. (5.15)
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Abstract

Using the Laplace-Beltrami operator we construct the Brownian mo-
tion process on the n-dimensional sphere, n = 1, 2, 3. Then we evaluate
explicitly certain quantities for this process. We start with the transition
density and continue with the calculation of some probabilistic quantities
regarding the exit times of specific domains possessing certain symmetries.
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1 Introduction

1.1 The n-Sphere

Let n ∈ N = {1, 2, 3, . . .}. The n-dimensional sphere Sn with center (c1, ..., cn+1)
and radius a > 0 is the set of all points x ∈ Rn+1 satisfying

(x1 − c1)2 + · · ·+ (xn+1 − cn+1)2 = a2

The most interesting case in applications is, of course, the case n = 2. For the
sake of comparison we will also discuss the cases n = 1 (i.e. the circle) and
n = 3. In some cases we will even consider the case of general n.

1.2 Stereographic Projection Coordinates

Consider the n-sphere, n ≥ 2,

x2
1 + · · ·+ x2

n + (xn+1 − a)2 = a2

To each point (x1, ..., xn, xn+1) of this sphere, other than its “north pole” N =
(0, ..., 0, 2a) we associate the coordinates

ξ1 =
2ax1

2a− xn+1
, . . . , ξn =

2axn
2a− xn+1

Given the coordinates (ξ1, ..., ξn) of a point on the sphere with Cartesian coor-
dinates (x1, ..., xn, xn+1), we have

x1 =
4a2ξ1

ξ2
1 + · · ·+ ξ2

n + 4a2
, . . . , xn =

4a2ξn
ξ2
1 + · · ·+ ξ2

n + 4a2
, xn+1 =

2a
(
ξ2
1 + · · ·+ ξ2

n

)
ξ2
1 + · · ·+ ξ2

n + 4a2
.

1.3 Spherical Coordinates

The points of the n-sphere

x2
1 + · · ·+ x2

n + x2
n+1 = a2

may also be described in spherical coordinates (θ1, ..., θn−1, ϕ) as follows:

• For n = 1, x1 = a cosϕ, x2 = a sinϕ, where 0 ≤ ϕ < 2π.

• For n = 2, (θ1 = θ) x1 = a cos θ sinϕ, x2 = a sin θ sinϕ, x3 = a cosϕ,
where 0 ≤ θ < 2π and 0 ≤ ϕ ≤ π.

• For n = 3, x1 = a cos θ1 sin θ2 sinϕ, x2 = a sin θ1 sin θ2 sinϕ,
x3 = a cos θ2 sinϕ, x4 = a cosϕ, where 0 ≤ θ1 < 2π, 0 ≤ θ2 ≤ π, and
0 ≤ ϕ ≤ π.

• In general for n ≥ 4
x1 = a cos θ1 sin θ2 sin θ3... sin θn−1 sinϕ, x2 = a sin θ1 sin θ2 sin θ3... sin θn−1 sinϕ,
xk = a cos θk−1 sin θk... sin θn−1 sinϕ, for k = 3, 4, ..., n
and xn+1 = a cosϕ, where 0 ≤ θ1 < 2π, 0 ≤ θi ≤ π,
for i = 2, 3, ..., n− 1, and 0 ≤ ϕ ≤ π.

2
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1.4 The Laplace-Beltrami Operator

In spherical coordinates: The Laplace-Beltrami operator of a smooth function

f on S1 is

∆1f =
1

a2
· ∂

2f

∂ϕ2

The Laplace-Beltrami operator of a smooth function f on S2 is

∆2f =
1

a2 sinϕ

(
fθθ

sinϕ
+ fϕ cosϕ+ fϕϕ sinϕ

)
In the case where f is independent of θ we have

∆2f =
1

a2
(fϕϕ + fϕ cotϕ)

The Laplace-Beltrami operator of a smooth function f on S3 is

∆3f =
1

a2 sin2 ϕ

[
1

sin2 θ2

· ∂
2f

∂θ2
1

+
1

sin θ2
· ∂

∂θ2

(
∂f

∂θ2
sin θ2

)
+

∂

∂ϕ

(
∂f

∂ϕ
sin2 ϕ

)]
and if f is independent of θ1 and θ2,

∆3f =
1

a2
(fϕϕ + 2fϕ cotϕ)

In stereographic projection coordinates: The Laplace-Beltrami operator of a
smooth function f on Sn, n ≥ 2 is

∆nf =

(
ξ2
1 + · · ·+ ξ2

n + 4a2
)2

16a4

[
n∑
i=1

∂2f

∂ξ2
i

− 2(n− 2)

(ξ2
1 + · · ·+ ξ2

n + 4a2)

n∑
i=1

ξi
∂f

∂ξi

]

In particular, for n = 2 we get

∆2f =

(
ξ2
1 + ξ2

2 + 4a2
)2

16a4

(
∂2f

∂ξ2
1

+
∂2f

∂ξ2
2

)

1.5 Brownian motion on Sn (starting at x ∈ Sn)

The Brownian motion on Sn is a diffusion (Markov) process Xt, t ≥ 0, on Sn

whose transition density is a function P (t, x, y) on (0,∞)× Sn × Sn satisfying

∂P

∂t
=

1

2
∆nP,

P (t, x, y)→ δx(y) as t→ 0+

where ∆n is the Laplace-Beltrami operator of Sn acting on the x-variables and
δx(y) is the delta mass at x, i.e. P (t, x, y) is the heat kernel of Sn. The heat
kernel exists, it is unique, positive, and smooth in (t, x, y) [4].

3
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1.5.1 Further Properties of the Heat Kernel P (t, x, y)

It is well known that p(t, x, y) satisfies the following properties [4]

1. Symmetry: P (t, x, y) = P (t, y, x)

2. The semigroup identity: For any s ∈ (0, t),

P (t, x, y) =

∫
Sn

P (s, x, z)P (t− s, z, y)dµ(z)

where dµ is the n-th dimensional surface area.

3. For all t > 0 and x ∈ Sn ∫
Sn

P (t, x, y)dµ(y) = 1

4. As t→∞, P (t, x, y) approaches the uniform density on Sn, i.e.

lim
t→∞

P (t, x, y) =
1

An

where An is nth dimensional surface area of Sn with radius a. It is well
known that [8]

An =
2π

n+1
2 an

(n−1
2 )!

, for n odd

An =
2n(n2 − 1)!π

n
2 an

(n− 1)!
, for n even.

Finally, the symmetry of Sn implies that P (t, x, y) depends only on t and d(x, y),
the distance between x and y. Thus in spherical coordinates it depends on t
and the angle ϕ between x and y. Hence

P (t, x, y) = p(t, ϕ),

where p(t, ϕ) satisfies

∂p

∂t
=

1

2
∆np =

1

2a2

[
(n− 1) cotϕ · ∂p

∂ϕ
+
∂2p

∂ϕ2

]
and

lim
t→0+

aAn−1p(t, ϕ) · sinn−1 ϕ = δ(ϕ).

Here δ(·) is the standard Dirac delta function on R.

2 Explicit Form of the Heat Kernel

Reminder (Poisson Summation Formula). Let f(x) be a function in the
Schwartz space S(R), where S(R) consists of the set of all infinitely differentiable
functions f on R so that f and all its derivatives f (l) are rapidly decreasing, in
the sense that

sup
x∈R
|x|k

∣∣∣f (l)(x)
∣∣∣ <∞ for every k, l ≥ 0.

4
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Then ∑
n∈Z

f(x+ 2πn) =
1

2π

∑
n∈Z

F (n) exp(inx),

where F (ξ) is the Fourier transform of f(x), i.e.

F (ξ) =

∫ +∞

−∞
f(x) exp(−iξx)dx, ξ ∈ R.

For example, if

f(x) = exp(−Ax2 +Bx), A > 0, B ∈ C,

then

F (ξ) =

√
π

A
exp

(
(iξ −B)2

4A

)

2.1 The Case of S1

Proposition 2.1 The transition density function of the Brownian motion Xt, t ≥
0 on S1 with radius a is the function

p(t, ϕ) =
1

2πa

∑
n∈Z

exp

(
−n

2t

2a2
+ inϕ

)
.

Equivalently

p(t, ϕ) =
1

πa

∑
n∈N

[
exp

(
−n

2t

2a2

)
cos(nϕ)

]
− 1

2πa

and

p(t, ϕ) =
1√
2πt

∑
n∈Z

exp

(
−a

2

2t
(ϕ− 2πn)

2

)
.

Proof. If

p(t, ϕ) =
1

πa

∑
n∈N

[
exp

(
−n

2t

2a2

)
cos(nϕ)

]
− 1

2πa
,

then
∂p(t, ϕ)

∂t
= − 1

2πa3

∑
n∈N

n2 cos(nϕ) exp

(
−n

2t

2a2

)
(2.1)

and
∂2p(t, ϕ)

∂ϕ2
= − 1

πa

∑
n∈N

n2 cos(nϕ) exp

(
−n

2t

2a2

)
. (2.2)

Therefore
∂p(t, ϕ)

∂t
=

1

2a2

∂2p(t, ϕ)

∂ϕ2
.

We will now show that
lim
t→0+

ap(t, ϕ) = δ(ϕ).

5
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If ϕ ∈ (0, 2π), then
lim
t→0+

ap(t, ϕ) = 0. (2.3)

Next we observe that∫ 2π

0

ap(t, ϕ)dϕ =
1

π

∫ 2π

0

∑
n∈N

[
exp

(
−n

2t

2a2

)
cos(nϕ)

]
dϕ− 1. (2.4)

For t > 0 let us consider the functions

fn : [0, 2π]→ R, n ∈ N,

with

fn(ϕ) = cos(nϕ) exp

(
−n

2t

2a2

)
.

Notice that fn(ϕ) are integrable functions on [0, 2π]. Furthermore

+∞∑
n=1

fn(ϕ)

converges uniformly on [0, 2π] because

|fn(ϕ)| ≤ exp

(
−n

2t

2a2

)
and the series

∞∑
n=1

exp

(
−n

2t

2a2

)
converges. Therefore (2.4) gives∫ 2π

0

ap(t, ϕ)dϕ = −1 +
1

π

∑
n∈N

exp

(
−n

2t

2a2

)∫ 2π

0

cos(nϕ)dϕ,

thus ∫ 2π

0

ap(t, ϕ)dϕ = 1, for every t > 0. (2.5)

Therefore from (2.4) and (2.5)

lim
t→0+

ap(t, ϕ) = δ(ϕ)

and this complete the proof. �

2.2 The Case of S2

Let Xt, t ≥ 0 be the Brownian motion on a 2-dimensional sphere S2 of radius
a. The transition density function p(t, ϕ) of Xt is the unique solution of

∂p

∂t
=

1

2a2 sinϕ

(
∂2p(t, ϕ)

∂ϕ2
sinϕ+

∂p

∂ϕ
cosϕ

)
(2.6)
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and
lim
t→0+

2πa2 sin(ϕ)p(t, ϕ) = δ(ϕ). (2.7)

The solution to the diffusion equation

∂K(t, ϕ)

∂t
=

1

sinϕ

(
cosϕ

∂K(t, ϕ)

∂ϕ
+ sinϕ

∂2K(t, ϕ)

∂ϕ2

)
(2.8)

with initial condition

lim
t→0+

2π sin(ϕ)K(t, ϕ) = δ(ϕ) (2.9)

is given by the function (see [3])

K(t, ϕ) =
1

4π

∑
n∈N

(2n+ 1) exp
(
−n(n+ 1)

√
2t
)
P 0
n(cosϕ). (2.10)

Here P 0
n(·) is the associated Legendre polynomials of order zero, i.e.

P 0
n(x) =

1

2nn!
· d

n

dxn
[
(x2 − 1)n

]
. (2.11)

This fact implies the following

Proposition 2.2 The transition density function of the Brownian motion Xt,
t ≥ 0, on S2 with radius a it is given by the function

p(t, ϕ) =
1

4πa2

∑
n∈N

(2n+ 1) exp

(
−n(n+ 1)

√
t

a

)
P 0
n(cosϕ). (2.12)

2.3 The Case of S3

Proposition 2.3 Let Xt, t ≥ 0 be the Brownian motion on a 3-dimensional
sphere S3 of radius a. The transition density function p(t, ϕ) of Xt is given by

p(t, ϕ) =
exp

(
t

2a2

)
(2πt)3/2 sinϕ

∑
n∈Z

(ϕ+ 2nπ) exp

(
− (ϕ+ 2nπ)2a2

2t

)
,

where Z is the set of all integers. Equivalently

p(t, ϕ) = − i

4π2a3 sinϕ

∑
n∈Z

n exp

(
− t(n

2 − 1)

2a2
+ iϕn

)
and

p(t, ϕ) =
1

2π2a3 sinϕ

∑
n∈N

n sin(nϕ) exp

(
− t(n

2 − 1)

2a2

)
.

Furthermore p(t, ϕ) is analytic about ϕ = 0 and ϕ = π. In fact

p(t, 0) = lim
ϕ→0+

p(t, ϕ) =
1

2π2a3

∑
n∈N

n2 exp

(
− t(n

2 − 1)

2a2

)

7
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and

p(t, π) = lim
ϕ→π−

p(t, ϕ) =
1

2π2a3

∑
n∈N

n2(−1)n exp

(
− t(n

2 − 1)

2a2

)
.

Reminder. The ϑ3 function of Jacobi is

ϑ3(z, r) = 1 + 2
∞∑
n=0

exp
(
iπrn2

)
cos(2nz),

where r ∈ C with Im {r} > 0. It follows that

p(t, ϕ) = − 1

4π2a3 sinϕ
exp

(
t

2a2

)
∂

∂ϕ
ϑ3

(
ϕ

2
,
ti

2a2π

)
.

Sketch of Proof. First we will prove that p(t, ϕ) satisfies the differential
equation

∂p

∂t
=

1

2
∆3p.

After that, we will show that

lim
t→0+

4πa3 sin2(ϕ)p(t, ϕ) = δ(ϕ).

For arbitrarily small ε > 0, let

Iε =

∫ ε

0

4πa3 sin2(ϕ)p(t, ϕ)dϕ.

We have

lim
t→0+

Iε = lim
t→0+

4πa3 exp
(
t

2a2

)
(2tπ)3/2

(∫ ε

0

ϕ sin(ϕ) exp

(
−ϕ

2a2

2t

)
dϕ

+
∑
n∈Z∗

∫ ε

0

(ϕ+ 2nπ) sin(ϕ) exp

(
− (ϕ+ 2nπ)2a2

2t

)
dϕ

)
,

where Z∗ = Z− {0}. However∣∣∣∣∣∑
n∈Z∗

∫ ε

0

(ϕ+ 2nπ) sin(ϕ) exp

(
− (ϕ+ 2nπ)2a2

2t

)
dϕ

∣∣∣∣∣ ≤ ∑
n∈Z∗

∫ ε

0

(2|n|+1)π exp

(
−n

2π2a2

2t

)
dϕ

and∑
n∈Z∗

∫ ε

0

(2|n|+ 1)π exp

(
−n

2π2a2

2t

)
dϕ = ε

∑
n∈Z∗

(2|n|+ 1)π exp

(
−n

2π2a2

2t

)
,

which converges to 0 as t → 0+, by Lebesgue’s Dominated Convergence Theo-
rem. Therefore

lim
t→0+

Iε = lim
t→0+

4πa3 exp
(
t

2a2

)
(2tπ)3/2

∫ ε

0

ϕ sinϕ exp

(
−ϕ

2a2

2t

)
dϕ.
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By using the Laplace method for integrals [1]∫ ε

0

ϕ sin(ϕ) exp

(
−ϕ

2a2

2t

)
dϕ ∼

∫ ε

0

ϕ2 exp

(
−ϕ

2a2

2t

)
dϕ ∼

∫ ∞
0

ϕ2 exp

(
−ϕ

2a2

2t

)
dϕ,

as t→ 0+. Here A ∼ B means that A
B → 1. Hence

lim
t→0+

Iε = lim
t→0+

4πa3 exp
(
t

2a2

)
(2tπ)3/2

∫ ∞
0

ϕ2 exp

(
−ϕ

2a2

2t

)
dϕ,

or, for

u =
ϕa√
t

lim
t→0+

Iε = lim
t→0+

2 exp

(
t

2a2

)∫ ∞
0

u2

√
2π

exp

(
−u

2

2

)
du.

i.e.
lim
t→0+

Iε = 1. (2.13)

Furthermore, for every t > 0, we have

I =

∫ π

0

4πa3 sin2(ϕ)p(t, ϕ)dϕ, (2.14)

hence,

I =
4πa3 exp

(
t

2a2

)
(2tπ)3/2

∫ π

0

∑
n∈Z

(ϕ+ 2nπ) sin(ϕ) exp

(
− (ϕ+ 2nπ)2a2

2t

)
dϕ.

The series ∑
n∈Z

(ϕ+ 2nπ) sin(ϕ) exp

(
− (ϕ+ 2nπ)2a2

2t

)
converges uniformly on [0, π] for every t > 0, because∣∣∣∣(ϕ+ 2nπ) sin(ϕ) exp

(
− (ϕ+ 2nπ)2a2

2t

)∣∣∣∣ ≤ 2|n|π exp

(
−n

2π2a2

2t

)
and the series ∑

n∈Z
Mn,

where

Mn = 2|n|π exp

(
−n

2π2a2

2t

)
converges. Therefore (2.14), implies that

I =
4πa3 exp

(
t

2a2

)
(2tπ)3/2

∑
n∈Z

∫ π

0

(ϕ+ 2nπ) sin(ϕ) exp

(
− (ϕ+ 2nπ)2a2

2t

)
dϕ.

Hence

I =
a exp

(
t

2a2

)
√

2tπ

∑
n∈Z

∫ π

0

[exp(iϕ) + exp(−iϕ)] exp

(
− (ϕ+ 2nπ)2a2

2t

)
dϕ.

(2.15)
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Let u = ϕ+ 2nπ, then (2.15) gives

I =
a√
2tπ

(√
2tπ

2a
+

√
2tπ

2a

)
= 1

for every t > 0. In particular

lim
t→0+

∫ π

0

4πa3 sin2(ϕ)p(t, ϕ)dϕ = 1. (2.16)

From (2.13) and (2.16) we have that that

lim
t→0+

4πa3 sin2(ϕ)p(t, ϕ)dϕ = δ(ϕ)

and this complete the proof. �

3 Stochastic Differential Equation (SDE) of Xt

in Local Coordinates

In spherical coordinates:

The Brownian motion on S1 satisfies the SDE

dXt =
1

a
dBt.

The Brownian motion on S2 satisfies the SDE

dXt =

(
0,

cosϕ

2a2 sinϕ

)
dt+

[ 1
a sinϕ 0

0 1
a

] [
dB1(t)
dB2(t)

]
.

The Brownian motion on S3 satisfies the SDE

dXt =

(
0,

cos θ2

2a2 sin θ2 sin2 ϕ
,

cosϕ

a2 sinϕ

)
dt+

 1
a sin θ2 sinϕ 0 0

0 1
a sinϕ 0

0 0 1
a

 dB1(t)
dB2(t)
dB3(t)

 .
In stereographic projection coordinates: The Brownian motion on S2 satisfies
the SDE

dXt =
ξ2
1 + ξ2

2 + 4a2

4a2

[
dB1(t)
dB2(t)

]
.

The Brownian motion on S3 satisfies the SDE

dXt = −
(
ξ2
1 + ξ2

2 + ξ2
3 + 4a2

)
16a4

(ξ1, ξ2, ξ3) dt+

(
ξ2
1 + ξ2

2 + ξ2
3 + 4a2

)
4a2

 dB1(t)
dB2(t)
dB3(t)

 .
The Brownian motion on Sn, n ≥ 2 satisfies the SDE

dXt = (2−n)

(
ξ2
1 + · · ·+ ξ2

n + 4a2
)

16a4
(ξ1, · · · , ξn) dt+

(
ξ2
1 + . . .+ ξ2

n + 4a2
)

4a2


dB1(t)
dB2(t)

...
dBn(t)

 .
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4 Expectations of exit times

Let Xt be the Brownian motion in Sn and D ⊂ Sn. The random variable

T = inf{ t ≥ 0| Xt /∈ D}

is called the (first) exit time D.
Reminder. If

u(x) = Ex[T ],

(here the superscript x indicates that X0 = x) then u(x) satisfies

1

2
∆nu = −1

u|∂D = 0

Let ϕ1, ϕ2 ∈ [0, 2π), ϕ1 < ϕ2. Consider the set

D = (ϕ1, ϕ2) .

If Xt is the Brownian motion on S1 starting at the point ϕ ∈ D, then

Eϕ[T ] = a2 (ϕ− ϕ1) (ϕ2 − ϕ)

Let ϕ0 ∈ (0, π) be fixed. We consider the set D in Sn, n ≥ 2, such that

D = { (θ1, . . . , θn−1, ϕ)| ϕ ∈ [0, ϕ0)} .

If Xt is the Brownian motion on Sn starting at the point

A = (θ1, . . . , θn−1, ϕ) ∈ D

then

EA[T ] = u(ϕ) = 2a2

∫ ϕ0

ϕ

∫ x
0

(sinω)n−1dω

(sinx)n−1
dx

Notice that u(ϕ) is an elementary function.
For n = 2 we obtain

EA[T ] = 2a2 ln

(
1 + cosϕ

1 + cosϕ0

)
.

For n = 3 we obtain

EA[T ] = a2 (ϕ cotϕ− ϕ0 cotϕ0) .

Let ϕ1, ϕ2 ∈ (0, π), ϕ1 < ϕ2. Consider the set D in Sn, n ≥ 2,

D = { (θ1, . . . , θn−1, ϕ)| ϕ ∈ (ϕ1, ϕ2)} .

If Xt is the Brownian motion on Sn starting at the point

A = (θ1, . . . , θn−1, ϕ) ∈ D
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then

EA[T ] = 2a2

∫ ϕ1

ϕ

∫ x
0

(sinω)n−1dω

(sinx)n−1
dx+

∫ ϕ2

ϕ1

∫ x
0

(sinω)n−1dω

(sin x)n−1 dx∫ ϕ2

ϕ1
1

(sin x)n−1 dx
·
∫ ϕ

ϕ1

1

(sinx)n−1
dx

 .
For n = 2 we obtain

EA[T ] =
4a2

ln
(

tan(ϕ2/2)
tan(ϕ1/2)

) [ln(cos (ϕ1/2)

cos (ϕ2/2)

)
ln

(
sin (ϕ/2)

sin (ϕ1/2)

)
− ln

(
cos (ϕ1/2)

cos (ϕ/2)

)
ln

(
sin (ϕ2/2)

sin (ϕ1/2)

)]
.

For n = 3 we obtain

EA[T ] =
a2 [(ϕ− ϕ1) cotϕ cotϕ1 + (ϕ1 − ϕ2) cotϕ1 cotϕ2 + (ϕ2 − ϕ) cotϕ2 cotϕ]

cotϕ1 − cotϕ2
.

Notice that the formulas for n = 2 and n = 3 are quite different.

5 Hitting Probabilities

Let Xt be the Brownian motion in Sn, D ⊂ Sn, and T its exit time.
Reminder. Let Γ ⊂ D and

u(x) = P x{XT ∈ Γ},

then u(x) satisfies
∆nu = 0

u|Γ = 1, u|∂D\Γ = 0

Consider the subset D = (ϕ1, ϕ2) of S1, 0 < ϕ1 < ϕ2 < 2π. If Γ1 = {ϕ1}, then

Pϕ{XT ∈ Γ1} =
ϕ2 − ϕ
ϕ2 − ϕ1

Let ϕ1, ϕ2 ∈ (0, π), ϕ1 < ϕ2. Consider the set D in Sn, n ≥ 2,

D = { (θ1, . . . , θn−1, ϕ)| ϕ ∈ (ϕ1, ϕ2)}

and the point
A = (θ1, . . . , θn−1, ϕ) ∈ D.

If Γ1 = {(θ1, . . . , θn−1, ϕ1)}, then

PA{XT ∈ Γ1} =

∫ ϕ2

ϕ
1

(sin x)n−1 dx∫ ϕ2

ϕ1

1
(sin x)n−1 dx

.

For n = 2 we obtain

PA{XT ∈ Γ1} =

ln

(
tan(ϕ2

2 )
tan(ϕ

2 )

)
ln

(
tan(ϕ2

2 )
tan(ϕ1

2 )

) .
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For n = 3 we obtain

PA{XT ∈ Γ1} =
cotϕ− cotϕ2

cotϕ1 − cotϕ2
=

sinϕ1 sin(ϕ2 − ϕ)

sinϕ sin(ϕ2 − ϕ1)
.

Let D be domain on S2 whose stereographic coordinate description is

D = {(ξ1, ξ2)| b < ξ2 < c},

i.e. D is the domain bounded by two circles passing through the north pole. If
A = (ξ1, ξ2) ∈ D and

Γ1 = {(ξ1, b)| ξ1 ∈ R},

then

PA{XT ∈ Γ1} =
c− ξ2
c− b

. (5.1)

6 The Moment Generating Function of T

Reminder. Assume that λ > −λ1/2, where λ1 is the first Dirichlet eigenvalue
of D ⊂ Sn. If

u(x) = Ex[e−λT ],

then u(x) satisfies
1

2
∆nu = λu

u|∂D = 1

Suppose D ⊂ S1 is the domain

D = (ϕ1, ϕ2), 0 ≤ ϕ1 < ϕ2 < 2π.

Then, for ϕ ∈ (ϕ1, ϕ2)

Eϕ[e−λT ] =
sinh

(
a
√

2λ(ϕ2 − ϕ)
)

+ sinh
(
a
√

2λ(ϕ− ϕ1)
)

sinh
(
a
√

2λ(ϕ2 − ϕ1)
)

provided

λ > − π2

2a2(ϕ2 − ϕ1)2

Let Xt be the Brownian motion on S2 starting at the point

A = (θ, ϕ) ∈ D,

where D is the domain

D = { (θ, ϕ)| θ ∈ [0, 2π), and ϕ ∈ [0, ϕ0)} .

Then

EA[exp(−λT )] =
Pν(cosϕ)

Pν(cosϕ0)
,

13

RANDOM MOTION ON THE SPHERE...

38



D. Kouloumpou and V.G. Papanicolaou

where ν is such that ν(ν + 1) = −2a2λ and Pν(·) is the Legendre function

Pν(z) = P−ν−1(z) =
1

π

∫ π

0

(
z +

√
z2 − 1 cosφ

)ν
dφ,

where the multiple-valued function
(
z +
√
z2 − 1 cosφ

)ν
is to be determined in

such a way that for φ = π/2 it is equal to (the principal value of) zν (which is,
in particular, real for positive z and real ν).

Let Xt be the Brownian motion on Sn starting at the point A ∈ D, where

D = { (θ1, . . . , θn−1, ϕ)| θ1 ∈ [0, 2π), θi ∈ [0, π] for i = 2, . . . , n− 1 and ϕ ∈ [0, ϕ0)} .

Then

EA[exp(−λT )] =
(sinϕ)

1−n
2 Pµν (cosϕ)

(sinϕ0)
1−n

2 Pµν (cosϕ0)
, (6.1)

where

ν =
1

2

(√
(n− 1)2 − 8a2λ− 1

)
and µ =

1

2
(n− 2).

The function Pµν (·) is the associated Legendre function

Pµν (z) =
1

Γ(−ν)Γ(ν + 1)

(
1 + z

1− z

)µ/2 ∞∑
n=0

Γ(n− ν)Γ(n+ ν + 1)

Γ(n+ 1− µ)n!

(
1− z
z

)n
.

Here Γ(·) denotes the Gamma function.

7 The Reflection Principle

We will discuss the reflection principle on S2. Everything extends easily to Sn.

Notation. For every point A = (x1, x2, x3) ∈ S2 we denote by Â the sym-
metric of A with respect to the x1x2-plane. In other words

Â = (x1, x2,−x3) ∈ S2

Theorem 7.1 Let Xt, t ≥ 0, be the Brownian motion on S2 starting at the
point A = (θ, ϕ) (in spherical coordinates). We assume that A ∈ D, where D is
the lower hemisphere, i.e.

D = { (θ, ϕ)| θ ∈ [0, 2π) and ϕ ∈ (π/2, π]}

If
T = inf { t ≥ 0| Xt /∈ D} ,

then
PA {T < t} = 2PA {Xt /∈ D} .

Sketch of Proof.

PA {T < t} = PA {T < t,Xt /∈ D}+ PA {T < t,Xt ∈ D} .
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However, if Xt /∈ D, then, of course, T < t. Thus

PA {T < t,Xt /∈ D} = PA {Xt /∈ D} .

On the other hand, if we set

X̃t =

{
Xt, if t ≤ T
X̂t, if t > T

then, by the strong Markov property of Xt

PA {T < t,Xt ∈ D} = PA
{
T < t, X̃t ∈ D

}
,

but X̃t ∈ D if and only if Xt /∈ D. Hence,

PA
{
T < t, X̃t ∈ D

}
= PA {T < t,Xt /∈ D} = PA {Xt /∈ D}

and
PA {T < t,Xt ∈ D} = PA {Xt /∈ D} .

Therefore PA {T < t} = 2PA {Xt /∈ D}. �

7.1 Applications of the Reflection Principle

The reflection principle can help to calculate the distribution functions of certain
exit times.
Let Xt be the Brownian motion on S2 starting at the south pole S, where
S = (0, π) in spherical coordinates. If D is the lower hemisphere and T its exit
time, then

PS{T < t} = 1−
∞∑
n=0

(−1)n exp

(
− (2n+ 1)2

√
t

a

)
· (2n)!(2n+ 3)

22n+1n!

The case of S1:
Let Xt be the Brownian motion on S1 starting at ϕ ∈ D = (π, 2π). If T is the
exit time of D, then

Pϕ{T < t} = 1 +
4

π

∑
n odd

1

n
exp

(
−n

2t

2a2

)
sin(nϕ)

The case of S3:
Let Xt be the Brownian motion on S3 starting at the south pole S, where
S = (0, 0, π) in spherical coordinates. If D is the lower hemisphere, namely

D =
{

(θ1, θ2, ϕ) ∈ S3
∣∣ θ1 ∈ [0, 2π), θ2 ∈ [0, π], ϕ ∈ (π/2, π ]

}
and T the exit time of D, then

PS{T < t} = 1 +
16

π

∞∑
n=1

(−1)nn2 exp

(
− (4n2 − 1)t

2a2

)
.
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